2D MOT 2015 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
AP_HWDPL_p
1. online method using public detections
16.8
38.5
±9.9
47.18.7% 37.4% 4,00533,203586 (12.8)1,263 (27.5)6.7Public
C. Long, A. Haizhou, S. Chong, Z. Zijie, B. Bo. Online Multi-Object Tracking with Convolutional Neural Networks. In 2017 IEEE International Conference on Image Processing (ICIP), 2017.
AMIR15
2. online method using public detections
21.2
37.6
±12.5
46.015.8% 26.8% 7,93329,3971,026 (19.7)2,024 (38.8)1.9Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
JointMC
3. using public detections
20.0
35.6
±18.9
45.123.2% 39.3% 10,58028,508457 (8.5)969 (18.1)0.6Public
M. Keuper, S. Tang, Z. Yu, B. Andres, T. Brox, B. Schiele. A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects. In CoRR, 2016.
RAR15pub
4. online method using public detections
22.9
35.1
±12.5
45.413.0% 42.3% 6,77132,717381 (8.1)1,523 (32.6)5.4Public
Anonymous ICCV submission
mLK
5. online method using public detections
19.5
35.1
±12.9
47.512.3% 38.3% 5,67833,815383 (8.5)1,175 (26.1)1.0Public
Yuan Zhang, Di Xie and Shiliang Pu (Hikvision Research Institute)
HybridDAT
6. online method using public detections
19.1
35.0
±15.0
47.711.4% 42.2% 8,45531,140358 (7.3)1,267 (25.7)4.6Public
M. Yang, Y. Jia. A Hybrid Data Association Framework for Robust Online Multi-Object Tracking. In IEEE Transactions on Image Processing, 2016.
AM
7. online method using public detections
20.3
34.3
±13.7
48.311.4% 43.4% 5,15434,848348 (8.0)1,463 (33.8)0.5Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism. In arXiv preprint arXiv:1708.02843, 2017.
TSMLCDEnew
8. using public detections
22.9
34.3
±13.1
44.114.0% 39.4% 7,86931,908618 (12.9)959 (20.0)6.5Public
B. Wang, G. Wang, K. L. Chan, L. Wang. Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation. In arXiv:1511.06654, 2015.
EAGS
9. using public detections
13.7
34.2
±15.2
47.516.4% 45.6% 8,73531,304372 (7.6)865 (17.6)192.8Public
#PR-D-17-01373# Enhancing Association Graph with Super-voxel for Multi-target Tracking
QuadMOT
10. using public detections
26.2
33.8
±14.8
40.412.9% 36.9% 7,89832,061703 (14.7)1,430 (29.9)3.7Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
NOMT
11. using public detections
19.9
33.7
±16.2
44.612.2% 44.0% 7,76232,547442 (9.4)823 (17.5)11.5Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
DCCRF
12. online method using public detections
28.9
33.6
±11.0
39.110.4% 37.6% 5,91734,002866 (19.4)1,566 (35.1)0.1Public
Anonymous submission
TDAM
13. online method using public detections
25.4
33.0
±9.8
46.113.3% 39.1% 10,06430,617464 (9.2)1,506 (30.0)5.9Public
M. Yang, Y. Jia. Temporal dynamic appearance modeling for online multi-person tracking. In Computer Vision and Image Understanding, 2016.
HAF
14. using public detections
20.5
33.0
±17.8
47.416.4% 44.9% 9,59331,204376 (7.6)804 (16.3)0.6Public
Anonymous submission
CDA_DDALpb
15. online method using public detections
26.2
32.8
±10.6
38.89.7% 42.2% 4,98335,690614 (14.7)1,583 (37.8)2.3Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking, In IEEE TPAMI, 2017.
MOTBKCF
16. online method using public detections
25.2
32.4
±15.3
44.614.1% 42.0% 8,91232,112501 (10.5)1,058 (22.2)0.2Public
Anonymous submission
MHT_DAM
17. using public detections
22.8
32.4
±15.6
45.316.0% 43.8% 9,06432,060435 (9.1)826 (17.3)0.7Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
JAM
18. online method using public detections
27.6
32.0
±14.6
39.210.3% 43.6% 5,71435,473562 (13.3)1,217 (28.8)0.0Public
Anonymous submission
LFNF
19. using public detections
29.8
31.6
±12.3
33.19.6% 41.7% 5,94335,095961 (22.4)1,106 (25.8)4.0Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
Q_cf
20. online method using public detections
29.1
31.6
±13.5
43.816.0% 34.7% 9,71131,579742 (15.3)1,505 (31.0)1.0Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
cf_mdp
21. online method using public detections
19.0
31.4
±14.7
43.716.1% 34.3% 10,11831,284718 (14.6)1,469 (29.9)450.4Public
Anonymous submission
CF_MCMC
22. using public detections
30.8
31.4
±11.3
36.410.3% 40.9% 8,79832,541814 (17.3)1,711 (36.4)3.2Public
Anonymous submission
PHD_GSDL
23. online method using public detections
34.1
30.5
±14.9
38.87.6% 41.2% 6,53435,284879 (20.6)2,208 (51.9)8.2Public
Anonymous submission
AMT
24. online method using public detections
20.8
30.4
±13.6
43.915.0% 35.6% 10,39131,641725 (14.9)1,641 (33.8)296.0Public
Anonymous submission
MDP
25. online method using public detections
29.1
30.3
±14.6
44.713.0% 38.4% 9,71732,422680 (14.4)1,500 (31.8)1.1Public
Y. Xiang, A. Alahi, S. Savarese. Learning to Track: Online Multi-Object Tracking by Decision Making. In International Conference on Computer Vision (ICCV), 2015.
MCF_PHD
26. using public detections
26.8
29.9
±20.0
38.211.9% 44.0% 8,89233,529656 (14.4)989 (21.8)12.2Public
N. Wojke, D. Paulus. Global data association for the Probability Hypothesis Density filter using network flows. In 2016 IEEE International Conference on Robotics and Automation, ICRA, 2016.
CNNTCM
27. using public detections
28.1
29.6
±13.9
36.811.2% 44.0% 7,78634,733712 (16.4)943 (21.7)1.7Public
B. Wang, K. L. Chan, L. Wang, B. Shuai, Z. Zuo, T. Liu, G. Wang. Joint Learning of Convolutional Neural Networks and Temporally Constrained Metrics for Tracklet Association. In DeepVision Workshop (CVPR), 2016.
MAR
28. using public detections
34.0
29.6
±11.6
42.811.7% 34.3% 9,36432,1311,783 (37.4)2,439 (51.1)1.2Public
Anonymous submission
Otakudj
29. online method using public detections
35.7
29.5
±14.2
43.011.8% 34.3% 9,43332,0671,798 (37.6)2,431 (50.8)0.6Public
Anonymous submission
RSCNN
30. using public detections
30.4
29.5
±23.9
37.012.9% 36.3% 11,86630,474976 (19.4)1,176 (23.3)4.0Public
Heba Mahgoub, Khaled Mostafa, Khaled T. Wassif and Ibrahim Farag, “Multi-Target Tracking Using Hierarchical Convolutional Features and Motion Cues” International Journal of Advanced Computer Science and Applications(IJACSA), 8(11), 2017.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
Stitiching
31. using public detections
35.0
29.3
±25.1
42.611.8% 34.1% 9,55532,0181,877 (39.2)2,428 (50.7)4.8Public
Anonymous submission
TBSS15
32. online method using public detections
34.3
29.2
±12.5
37.26.8% 43.8% 6,06836,779649 (16.2)1,508 (37.6)11.5Public
Anonymous submission
SCEA
33. online method using public detections
32.6
29.1
±12.2
37.28.9% 47.3% 6,06036,912604 (15.1)1,182 (29.6)6.8Public
J. Yoon, C. Lee, M. Yang, K. Yoon. Online Multi-object Tracking via Structural Constraint Event Aggregation. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
SiameseCNN
34. using public detections
33.6
29.0
±15.1
34.38.5% 48.4% 5,16037,798639 (16.6)1,316 (34.2)52.8Public
Laura Leal-Taixé, Cristian Canton-Ferrer, Konrad Schindler. Learning by Tracking: Siamese CNN for Robust Target Association. DeepVision Workshop (CVPR), Las Vegas (Nevada, USA), June 2016.
ARM
35. using public detections
30.9
29.0
±12.8
40.610.0% 36.3% 7,86633,8211,948 (43.3)2,711 (60.3)9.6Public
Anonymous submission
TBX
36. using public detections
42.4
27.5
±13.3
33.810.4% 45.8% 7,96835,810759 (18.2)1,528 (36.6)0.1Public
R. Henschel, L. Leal-Taixé, B. Rosenhahn, K. Schindler. Tracking with multi-level features. In arXiv:1607.07304, 2016.
oICF
37. online method using public detections
36.1
27.1
±14.9
40.56.4% 48.7% 7,59436,757454 (11.3)1,660 (41.3)1.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
RMM
38. using public detections
43.0
26.6
±12.3
31.25.1% 44.8% 6,70837,2811,088 (27.7)1,957 (49.8)9.4Public
Anonymous submission
TO
39. using public detections
38.6
25.7
±13.5
32.74.3% 57.4% 4,77940,511383 (11.2)600 (17.6)5.0Public
S. Manen, R. Timofte, D. Dai, L. Gool. Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016.
MCFCOS_CNN
40. online method using public detections
42.0
25.5
±20.8
32.09.3% 34.4% 12,34431,3782,064 (42.2)2,618 (53.5)0.5Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
2D_SPL
41. online method using public detections
38.0
25.2
±14.6
35.85.1% 50.3% 8,03737,190706 (17.9)1,278 (32.4)0.8Public
Anonymous submission
LP_SSVM
42. using public detections
34.1
25.2
±13.7
34.05.8% 53.0% 8,36936,932646 (16.2)849 (21.3)41.3Public
S. Wang, C. Fowlkes. Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions. In International Journal of Computer Vision, 2016.
ELP
43. using public detections
40.0
25.0
±10.8
26.27.5% 43.8% 7,34537,3441,396 (35.6)1,804 (46.0)5.7Public
N. McLaughlin, J. Martinez Del Rincon, P. Miller. Enhancing Linear Programming with Motion Modeling for Multi-target Tracking. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
HSA
44. online method using public detections
44.4
25.0
±14.4
29.75.0% 43.8% 7,64536,9361,504 (37.7)2,550 (63.9)2.7Public
Anonymous submission
GMC
45. online method using public detections
28.5
25.0
±13.8
38.810.5% 44.4% 12,04633,441599 (13.1)1,246 (27.3)28.9Public
Anonymous submission
MVM
46. online method using public detections
45.6
25.0
±11.3
26.53.2% 48.7% 4,66640,1181,302 (37.5)2,084 (60.1)13.8Public
Anonymous submission
MTT
47. online method using public detections
41.1
25.0
±13.2
33.24.0% 53.0% 7,69137,833569 (14.8)1,218 (31.7)1.9Public
Anonymous submission
AR_WLS
48. using public detections
36.3
24.9
±14.5
35.46.1% 52.4% 8,07137,543551 (14.2)1,297 (33.3)2.1Public
Anonymous submission
AdTobKF
49. online method using public detections
33.8
24.8
±12.1
34.54.0% 52.0% 6,20139,321666 (18.5)1,300 (36.1)206.5Public
Anonymous submission
MPM
50. online method using public detections
47.0
24.8
±10.9
25.42.9% 50.2% 4,06140,8461,319 (39.4)2,017 (60.2)8.6Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
CNNEMBED
51. online method using public detections
31.9
24.7
±13.5
38.48.5% 47.7% 11,00034,786478 (11.0)822 (18.9)1.9Public
Anonymous submission
LINF1
52. using public detections
33.8
24.5
±15.4
34.85.5% 64.6% 5,86440,207298 (8.6)744 (21.5)7.5Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
TENSOR
53. using public detections
44.2
24.3
±13.2
24.15.5% 46.6% 6,64438,5821,271 (34.2)1,304 (35.1)24.0Public
Anonymous submission
A_TKF
54. online method using public detections
34.0
24.0
±13.3
35.56.0% 50.5% 7,83938,174689 (18.2)1,365 (36.0)180.7Public
Anonymous submission
TFMOT
55. online method using public detections
39.2
23.8
±11.9
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)11.3Public
Joint Cost Minimization for Multi-Object Tracking
JCM_MOT
56. online method using public detections
35.9
23.8
±12.0
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)11.3Public
Joint Cost Minimization for Multi-Object Tracking
JPDA_m
57. using public detections
34.0
23.8
±15.1
33.85.0% 58.1% 6,37340,084365 (10.5)869 (25.0)32.6Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
MotiCon
58. using public detections
46.8
23.1
±16.4
29.44.7% 52.0% 10,40435,8441,018 (24.4)1,061 (25.5)1.4Public
L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, S. Savarese. Learning an image-based motion context for multiple people tracking. In CVPR, 2014.
SegTrack
59. using public detections
46.2
22.5
±15.2
31.55.8% 63.9% 7,89039,020697 (19.1)737 (20.2)0.2Public
A. Milan, L. Leal-Taixé, K. Schindler, I. Reid. Joint Tracking and Segmentation of Multiple Targets. In CVPR, 2015.
EAMTTpub
60. online method using public detections
41.6
22.3
±14.2
32.85.4% 52.7% 7,92438,982833 (22.8)1,485 (40.6)12.2Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
CppSORT
61. online method using public detections
43.7
21.7
±11.8
26.83.7% 49.1% 8,42238,4541,231 (32.9)2,005 (53.6)1,112.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
OMT_DFH
62. online method using public detections
35.8
21.2
±17.2
37.37.1% 46.5% 13,21834,657563 (12.9)1,255 (28.8)28.6Public
J. Ju, D. Kim, B. Ku, D. Han, H. Ko. Online multi-object tracking with efficient track drift and fragmentation handling. In J. Opt. Soc. Am. A, 2017.
OLTT
63. using public detections
46.9
21.0
±12.7
24.63.3% 54.4% 8,37639,368794 (22.1)1,199 (33.4)10.9Public
Anonymous submission
MTSTracker
64. online method using public detections
41.3
20.6
±18.2
31.99.0% 36.9% 15,16132,2121,387 (29.2)2,357 (49.5)19.3Public
F. Nguyen Thi Lan Anh, F. Bremond. Multi-Object Tracking using Multi-Channel Part Appearance Representation. In International conference on Advanced video and Signal Based Surveillance, 2017.
LP2D
65. using public detections
43.4
19.8
±14.2
0.06.7% 41.2% 11,58036,0451,649 (39.9)1,712 (41.4)112.1Public
MOT baseline: Linear programming on 2D image coordinates.
DCO_X
66. using public detections
43.3
19.6
±14.1
31.55.1% 54.9% 10,65238,232521 (13.8)819 (21.7)0.3Public
A. Milan, K. Schindler, S. Roth. Multi-Target Tracking by Discrete-Continuous Energy Minimization. In IEEE PAMI, 2016.
CEM
67. using public detections
41.8
19.3
±17.5
0.08.5% 46.5% 14,18034,591813 (18.6)1,023 (23.4)1.1Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
RNN_LSTM
68. online method using public detections
48.4
19.0
±15.2
17.15.5% 45.6% 11,57836,7061,490 (37.0)2,081 (51.7)165.2Public
A. Milan, S. Rezatofighi, A. Dick, I. Reid, K. Schindler. Online Multi-Target Tracking using Recurrent Neural Networks. In AAAI, 2017.
RAM
69. using public detections
41.8
18.8
±12.4
31.112.6% 33.8% 14,38431,6953,814 (78.8)2,458 (50.8)8.2Public
Anonymous submission
RMOT
70. online method using public detections
46.8
18.6
±17.5
32.65.3% 53.3% 12,47336,835684 (17.1)1,282 (32.0)7.9Public
J. Yoon, H. Yang, J. Lim, K. Yoon. Bayesian Multi-Object Tracking Using Motion Context from Multiple Objects. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TSDA_OAL
71. online method using public detections
41.5
18.6
±17.6
36.19.4% 42.3% 16,35032,853806 (17.3)1,544 (33.2)19.7Public
H. Ko. Online multi-person tracking with two-stage data association and online appearance model learning. In IET Computer Vision, 2017.
GMPHD
72. online method using public detections
41.5
18.5
±12.7
28.43.9% 55.3% 7,86441,766459 (14.3)1,266 (39.5)19.8Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
SMOT
73. using public detections
57.8
18.2
±10.3
0.02.8% 54.8% 8,78040,3101,148 (33.4)2,132 (62.0)2.7Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
ALExTRAC
74. using public detections
50.9
17.0
±12.1
17.33.9% 52.4% 9,23339,9331,859 (53.1)1,872 (53.5)3.7Public
A. Bewley, L. Ott, F. Ramos, B. Upcroft. ALExTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains. In International Conference on Robotics and Automation (ICRA), (to appear) 2016.
TBD
75. using public detections
55.8
15.9
±17.6
0.06.4% 47.9% 14,94334,7771,939 (44.7)1,963 (45.2)0.7Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
GSCR
76. online method using public detections
41.6
15.8
±10.5
27.91.8% 61.0% 7,59743,633514 (17.7)1,010 (34.8)28.1Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Online multi-person tracking based on global sparse collaborative representations. In ICIP, 2015.
SSM_DPM
77. online method using public detections
36.7
15.1
±20.5
37.211.4% 44.5% 18,31933,193621 (13.5)1,229 (26.7)28.9Public
Anonymous submission
TC_ODAL
78. online method using public detections
57.2
15.1
±15.0
0.03.2% 55.8% 12,97038,538637 (17.1)1,716 (46.0)1.7Public
S. Bae, K. Yoon. Robust Online Multi-Object Tracking based on Tracklet Confidence and Online Discriminative Appearance Learning. In CVPR, 2014.
DP_NMS
79. using public detections
44.6
14.5
±14.5
19.76.0% 40.8% 13,17134,8144,537 (104.7)3,090 (71.3)444.8Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
STKSVD
80. online method using public detections
45.3
11.8
±18.5
33.25.1% 50.1% 17,07236,499641 (15.8)1,521 (37.5)1,156.6Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TBD_DL
81. online method using public detections
46.7
11.2
±18.5
32.45.3% 50.2% 17,17136,759651 (16.2)1,480 (36.8)170.1Public
Anonymous submission
cuMOT
82. online method using public detections
49.9
6.8
±13.7
22.41.1% 59.4% 12,29844,142811 (28.8)1,306 (46.4)28.9Public
Anonymous submission
LDCT
83. online method using public detections
42.4
4.7
±41.3
16.811.4% 32.5% 14,06632,15612,348 (259.1)2,918 (61.2)20.7Public
F. Solera, S. Calderara, R. Cucchiara. Learning to Divide and Conquer for Online Multi-Target Tracking. In ICCV, 2015
Dr_lzy
84. using public detections
38.8
-15.8
±21.6
24.116.6% 28.7% 38,04528,0295,079 (93.4)2,719 (50.0)9.6Public
Anonymous submission

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
11578372161440

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

TUD-Crossing

TUD-Crossing

(61.1% MOTA)

PETS09-S2L2

PETS09-S2L2

(40.5% MOTA)

ETH-Jelmoli

ETH-Jelmoli

(37.0% MOTA)

...

...

Venice-1

Venice-1

(19.1% MOTA)

ADL-Rundle-1

ADL-Rundle-1

(14.5% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.