2D MOT 2015 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
APRCNN_Pub
1. online method using public detections
13.3
38.5
±9.9
47.18.7% 37.4% 4,00533,203586 (12.8)1,263 (27.5)6.7Public
C. Long, A. Haizhou, S. Chong, Z. Zijie, B. Bo. Online Multi-Object Tracking with Convolutional Neural Networks. In 2017 IEEE International Conference on Image Processing (ICIP), 2017.
AMIR15
2. online method using public detections
18.3
37.6
±12.5
46.015.8% 26.8% 7,93329,3971,026 (19.7)2,024 (38.8)1.9Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In arXiv preprint arXiv:1701.01909, 2017.
JointMC
3. using public detections
16.4
35.6
±18.9
45.123.2% 39.3% 10,58028,508457 (8.5)969 (18.1)0.6Public
M. Keuper, S. Tang, Z. Yu, B. Andres, T. Brox, B. Schiele. A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects. In CoRR, 2016.
RAR15pub
4. online method using public detections
18.7
35.1
±12.5
45.413.0% 42.3% 6,77132,717381 (8.1)1,523 (32.6)5.4Public
Anonymous ICCV submission
mLK
5. online method using public detections
15.8
35.1
±12.9
47.512.3% 38.3% 5,67833,815383 (8.5)1,175 (26.1)1.0Public
Yuan Zhang, Di Xie and Shiliang Pu (Hikvision Research Institute)
HybridDAT
6. online method using public detections
15.6
35.0
±15.0
47.711.4% 42.2% 8,45531,140358 (7.3)1,267 (25.7)4.6Public
M. Yang, Y. Jia. A Hybrid Data Association Framework for Robust Online Multi-Object Tracking. In IEEE Transactions on Image Processing, 2016.
AM
7. online method using public detections
16.3
34.3
±13.7
48.311.4% 43.4% 5,15434,848348 (8.0)1,463 (33.8)0.5Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism. In arXiv preprint arXiv:1708.02843, 2017.
TSMLCDEnew
8. using public detections
19.1
34.3
±13.1
44.114.0% 39.4% 7,86931,908618 (12.9)959 (20.0)6.5Public
B. Wang, G. Wang, K. L. Chan, L. Wang. Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation. In arXiv:1511.06654, 2015.
EAGS
9. using public detections
11.2
34.2
±15.2
47.516.4% 45.6% 8,73531,304372 (7.6)865 (17.6)192.8Public
Enhancing Association Graph with Super-voxel for Multi-target Tracking
QuadMOT
10. using public detections
21.4
33.8
±14.8
40.412.9% 36.9% 7,89832,061703 (14.7)1,430 (29.9)3.7Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
NOMT
11. using public detections
16.7
33.7
±16.2
44.612.2% 44.0% 7,76232,547442 (9.4)823 (17.5)11.5Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
DCCRF
12. online method using public detections
23.2
33.6
±11.0
39.110.4% 37.6% 5,91734,002866 (19.4)1,566 (35.1)0.1Public
Anonymous submission
TDAM
13. online method using public detections
21.1
33.0
±9.8
46.113.3% 39.1% 10,06430,617464 (9.2)1,506 (30.0)5.9Public
M. Yang, Y. Jia. Temporal dynamic appearance modeling for online multi-person tracking. In Computer Vision and Image Understanding, 2016.
HAF
14. using public detections
16.9
33.0
±17.8
47.416.4% 44.9% 9,59331,204376 (7.6)804 (16.3)0.6Public
Anonymous submission
CDA_DDALpb
15. online method using public detections
21.3
32.8
±10.6
38.89.7% 42.2% 4,98335,690614 (14.7)1,583 (37.8)2.3Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking, In IEEE TPAMI, 2017.
MOTBKCF
16. online method using public detections
20.9
32.4
±15.3
44.614.1% 42.0% 8,91232,112501 (10.5)1,058 (22.2)0.2Public
Anonymous submission
MHT_DAM
17. using public detections
19.1
32.4
±15.6
45.316.0% 43.8% 9,06432,060435 (9.1)826 (17.3)0.7Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
JAM
18. online method using public detections
22.6
32.0
±14.6
39.210.3% 43.6% 5,71435,473562 (13.3)1,217 (28.8)0.0Public
Anonymous submission
LFNF
19. using public detections
24.2
31.6
±12.3
33.19.6% 41.7% 5,94335,095961 (22.4)1,106 (25.8)4.0Public
Anonymous submission
CF_MCMC
20. using public detections
24.8
31.4
±11.3
36.410.3% 40.9% 8,79832,541814 (17.3)1,711 (36.4)3.2Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
PHD_GSDL
21. online method using public detections
27.8
30.5
±14.9
38.87.6% 41.2% 6,53435,284879 (20.6)2,208 (51.9)8.2Public
Anonymous submission
MDP
22. online method using public detections
23.9
30.3
±14.6
44.713.0% 38.4% 9,71732,422680 (14.4)1,500 (31.8)1.1Public
Y. Xiang, A. Alahi, S. Savarese. Learning to Track: Online Multi-Object Tracking by Decision Making. In International Conference on Computer Vision (ICCV), 2015.
CNNTCM
23. using public detections
22.5
29.6
±13.9
36.811.2% 44.0% 7,78634,733712 (16.4)943 (21.7)1.7Public
B. Wang, K. L. Chan, L. Wang, B. Shuai, Z. Zuo, T. Liu, G. Wang. Joint Learning of Convolutional Neural Networks and Temporally Constrained Metrics for Tracklet Association. In DeepVision Workshop (CVPR), 2016.
RSCNN
24. using public detections
24.3
29.5
±23.9
37.012.9% 36.3% 11,86630,474976 (19.4)1,176 (23.3)4.0Public
Anonymous submission
SCEA
25. online method using public detections
26.3
29.1
±12.2
37.28.9% 47.3% 6,06036,912604 (15.1)1,182 (29.6)6.8Public
J. Yoon, C. Lee, M. Yang, K. Yoon. Online Multi-object Tracking via Structural Constraint Event Aggregation. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
SiameseCNN
26. using public detections
27.3
29.0
±15.1
34.38.5% 48.4% 5,16037,798639 (16.6)1,316 (34.2)52.8Public
Laura Leal-Taixé, Cristian Canton-Ferrer, Konrad Schindler. Learning by Tracking: Siamese CNN for Robust Target Association. DeepVision Workshop (CVPR), Las Vegas (Nevada, USA), June 2016.
TBX
27. using public detections
34.2
27.5
±13.3
33.810.4% 45.8% 7,96835,810759 (18.2)1,528 (36.6)0.1Public
R. Henschel, L. Leal-Taixé, B. Rosenhahn, K. Schindler. Tracking with multi-level features. In arXiv:1607.07304, 2016.
oICF
28. online method using public detections
29.4
27.1
±14.9
40.56.4% 48.7% 7,59436,757454 (11.3)1,660 (41.3)1.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
TO
29. using public detections
31.3
25.7
±13.5
32.74.3% 57.4% 4,77940,511383 (11.2)600 (17.6)5.0Public
S. Manen, R. Timofte, D. Dai, L. Gool. Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016.
MCFCOS_CNN
30. online method using public detections
33.8
25.5
±20.8
32.09.3% 34.4% 12,34431,3782,064 (42.2)2,618 (53.5)0.5Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
LP_SSVM
31. using public detections
27.7
25.2
±13.7
34.05.8% 53.0% 8,36936,932646 (16.2)849 (21.3)41.3Public
S. Wang, C. Fowlkes. Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions. In International Journal of Computer Vision, 2016.
ELP
32. using public detections
32.2
25.0
±10.8
26.27.5% 43.8% 7,34537,3441,396 (35.6)1,804 (46.0)5.7Public
N. McLaughlin, J. Martinez Del Rincon, P. Miller. Enhancing Linear Programming with Motion Modeling for Multi-target Tracking. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
HSA
33. online method using public detections
36.2
25.0
±14.4
29.75.0% 43.8% 7,64536,9361,504 (37.7)2,550 (63.9)2.7Public
Anonymous submission
GMC
34. online method using public detections
22.6
25.0
±13.8
38.810.5% 44.4% 12,04633,441599 (13.1)1,246 (27.3)28.9Public
Anonymous submission
MVM
35. online method using public detections
37.6
25.0
±11.3
26.53.2% 48.7% 4,66640,1181,302 (37.5)2,084 (60.1)13.8Public
Anonymous submission
MTT
36. online method using public detections
33.8
25.0
±13.2
33.24.0% 53.0% 7,69137,833569 (14.8)1,218 (31.7)1.9Public
Anonymous submission
AR_WLS
37. using public detections
29.4
24.9
±14.5
35.46.1% 52.4% 8,07137,543551 (14.2)1,297 (33.3)2.1Public
Anonymous submission
MPM
38. online method using public detections
38.5
24.8
±10.9
25.42.9% 50.2% 4,06140,8461,319 (39.4)2,017 (60.2)8.6Public
Anonymous submission
LINF1
39. using public detections
27.2
24.5
±15.4
34.85.5% 64.6% 5,86440,207298 (8.6)744 (21.5)7.5Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
TENSOR
40. using public detections
36.1
24.3
±13.2
24.15.5% 46.6% 6,64438,5821,271 (34.2)1,304 (35.1)24.0Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
A_TKF
41. online method using public detections
27.3
24.0
±13.3
35.56.0% 50.5% 7,83938,174689 (18.2)1,365 (36.0)180.7Public
Anonymous submission
TFMOT
42. online method using public detections
32.0
23.8
±11.9
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)11.3Public
Joint Cost Minimization for Multi-Object Tracking
JCM_MOT
43. online method using public detections
29.3
23.8
±12.0
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)11.3Public
Joint Cost Minimization for Multi-Object Tracking
JPDA_m
44. using public detections
27.3
23.8
±15.1
33.85.0% 58.1% 6,37340,084365 (10.5)869 (25.0)32.6Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
MotiCon
45. using public detections
38.0
23.1
±16.4
29.44.7% 52.0% 10,40435,8441,018 (24.4)1,061 (25.5)1.4Public
L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, S. Savarese. Learning an image-based motion context for multiple people tracking. In CVPR, 2014.
SegTrack
46. using public detections
38.0
22.5
±15.2
31.55.8% 63.9% 7,89039,020697 (19.1)737 (20.2)0.2Public
A. Milan, L. Leal-Taixé, K. Schindler, I. Reid. Joint Tracking and Segmentation of Multiple Targets. In CVPR, 2015.
EAMTTpub
47. online method using public detections
33.9
22.3
±14.2
32.85.4% 52.7% 7,92438,982833 (22.8)1,485 (40.6)12.2Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
CppSORT
48. online method using public detections
35.7
21.7
±11.8
26.83.7% 49.1% 8,42238,4541,231 (32.9)2,005 (53.6)1,112.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
OMT_DFH
49. online method using public detections
29.0
21.2
±17.2
37.37.1% 46.5% 13,21834,657563 (12.9)1,255 (28.8)28.6Public
J. Ju, D. Kim, B. Ku, D. Han, H. Ko. Online multi-object tracking with efficient track drift and fragmentation handling. In J. Opt. Soc. Am. A, 2017.
OLTT
50. using public detections
38.7
21.0
±12.7
24.63.3% 54.4% 8,37639,368794 (22.1)1,199 (33.4)10.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MTSTracker
51. online method using public detections
33.4
20.6
±18.2
31.99.0% 36.9% 15,16132,2121,387 (29.2)2,357 (49.5)19.3Public
F. Nguyen Thi Lan Anh, F. Bremond. Multi-Object Tracking using Multi-Channel Part Appearance Representation. In International conference on Advanced video and Signal Based Surveillance, 2017.
RMM
52. using public detections
43.5
20.5
±12.6
20.63.3% 47.4% 5,78441,1081,939 (58.6)2,336 (70.6)3.3Public
Anonymous submission
LP2D
53. using public detections
35.3
19.8
±14.2
0.06.7% 41.2% 11,58036,0451,649 (39.9)1,712 (41.4)112.1Public
MOT baseline: Linear programming on 2D image coordinates.
DCO_X
54. using public detections
35.3
19.6
±14.1
31.55.1% 54.9% 10,65238,232521 (13.8)819 (21.7)0.3Public
A. Milan, K. Schindler, S. Roth. Multi-Target Tracking by Discrete-Continuous Energy Minimization. In IEEE PAMI, 2016.
CEM
55. using public detections
33.9
19.3
±17.5
0.08.5% 46.5% 14,18034,591813 (18.6)1,023 (23.4)1.1Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
RNN_LSTM
56. online method using public detections
39.6
19.0
±15.2
17.15.5% 45.6% 11,57836,7061,490 (37.0)2,081 (51.7)165.2Public
A. Milan, S. Rezatofighi, A. Dick, I. Reid, K. Schindler. Online Multi-Target Tracking using Recurrent Neural Networks. In AAAI, 2017.
RMOT
57. online method using public detections
38.2
18.6
±17.5
32.65.3% 53.3% 12,47336,835684 (17.1)1,282 (32.0)7.9Public
J. Yoon, H. Yang, J. Lim, K. Yoon. Bayesian Multi-Object Tracking Using Motion Context from Multiple Objects. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
TSDA_OAL
58. online method using public detections
33.6
18.6
±17.6
36.19.4% 42.3% 16,35032,853806 (17.3)1,544 (33.2)19.7Public
H. Ko. Online multi-person tracking with two-stage data association and online appearance model learning. In IET Computer Vision, 2017.
GMPHD
59. online method using public detections
34.5
18.5
±12.7
28.43.9% 55.3% 7,86441,766459 (14.3)1,266 (39.5)19.8Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
SMOT
60. using public detections
48.4
18.2
±10.3
0.02.8% 54.8% 8,78040,3101,148 (33.4)2,132 (62.0)2.7Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
ALExTRAC
61. using public detections
42.0
17.0
±12.1
17.33.9% 52.4% 9,23339,9331,859 (53.1)1,872 (53.5)3.7Public
A. Bewley, L. Ott, F. Ramos, B. Upcroft. ALExTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains. In International Conference on Robotics and Automation (ICRA), (to appear) 2016.
TBD
62. using public detections
45.7
15.9
±17.6
0.06.4% 47.9% 14,94334,7771,939 (44.7)1,963 (45.2)0.7Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
GSCR
63. online method using public detections
34.6
15.8
±10.5
27.91.8% 61.0% 7,59743,633514 (17.7)1,010 (34.8)28.1Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Online multi-person tracking based on global sparse collaborative representations. In ICIP, 2015.
SSM_DPM
64. online method using public detections
29.8
15.1
±20.5
37.211.4% 44.5% 18,31933,193621 (13.5)1,229 (26.7)28.9Public
Anonymous submission
TC_ODAL
65. online method using public detections
47.7
15.1
±15.0
0.03.2% 55.8% 12,97038,538637 (17.1)1,716 (46.0)1.7Public
S. Bae, K. Yoon. Robust Online Multi-Object Tracking based on Tracklet Confidence and Online Discriminative Appearance Learning. In CVPR, 2014.
DP_NMS
66. using public detections
35.8
14.5
±14.5
19.76.0% 40.8% 13,17134,8144,537 (104.7)3,090 (71.3)444.8Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
STKSVD
67. online method using public detections
37.4
11.8
±18.5
33.25.1% 50.1% 17,07236,499641 (15.8)1,521 (37.5)1,156.6Public
Anonymous submission
TBD_DL
68. online method using public detections
38.7
11.2
±18.5
32.45.3% 50.2% 17,17136,759651 (16.2)1,480 (36.8)170.1Public
Anonymous submission
cuMOT
69. online method using public detections
41.3
6.8
±13.7
22.41.1% 59.4% 12,29844,142811 (28.8)1,306 (46.4)28.9Public
Anonymous submission
LDCT
70. online method using public detections
34.5
4.7
±41.3
16.811.4% 32.5% 14,06632,15612,348 (259.1)2,918 (61.2)20.7Public
F. Solera, S. Calderara, R. Cucchiara. Learning to Divide and Conquer for Online Multi-Target Tracking. In ICCV, 2015

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
11578372161440

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

TUD-Crossing

TUD-Crossing

(61.6% MOTA)

PETS09-S2L2

PETS09-S2L2

(42.0% MOTA)

ETH-Jelmoli

ETH-Jelmoli

(37.3% MOTA)

...

...

Venice-1

Venice-1

(18.8% MOTA)

ADL-Rundle-1

ADL-Rundle-1

(14.2% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.