2D MOT 2015 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
NEW_NW
1. online method using public detections
51.3
-38.8
±53.1
2.00.1% 98.3% 25,60659,56980 (26.3)112 (36.8)5.8Public
Anonymous submission
JPDA_OP
2. online method using public detections
39.3
3.6
±11.3
7.50.4% 96.1% 1,02458,18929 (5.5)119 (22.5)77.7Public
Anonymous submission
TO
3. using public detections
39.2
25.7
±13.5
32.74.3% 57.4% 4,77940,511383 (11.2)600 (17.6)5.0Public
S. Manen, R. Timofte, D. Dai, L. Gool. Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016.
SegTrack
4. using public detections
46.3
22.5
±15.2
31.55.8% 63.9% 7,89039,020697 (19.1)737 (20.2)0.2Public
A. Milan, L. Leal-Taixé, K. Schindler, I. Reid. Joint Tracking and Segmentation of Multiple Targets. In CVPR, 2015.
LINF1
5. using public detections
35.0
24.5
±15.4
34.85.5% 64.6% 5,86440,207298 (8.6)744 (21.5)7.5Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
HAM_SADF
6. online method using public detections
31.8
25.2
±13.9
37.85.7% 58.3% 7,33038,275357 (9.5)745 (19.8)18.7Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
TFMOT
7. online method using public detections
39.7
23.8
±11.9
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)11.3Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
DCO_X
8. using public detections
44.1
19.6
±14.1
31.55.1% 54.9% 10,65238,232521 (13.8)819 (21.7)0.3Public
A. Milan, K. Schindler, S. Roth. Multi-Target Tracking by Discrete-Continuous Energy Minimization. In IEEE PAMI, 2016.
NOMT
9. using public detections
21.8
33.7
±16.2
44.612.2% 44.0% 7,76232,547442 (9.4)823 (17.5)11.5Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
TC_SIAMESE
10. online method using public detections
42.3
20.2
±13.9
32.62.6% 67.5% 6,12742,596294 (9.6)825 (26.9)13.0Public
Y. Yoon, Y. Song, K. Yoon, M. Jeon. Online Multiple-Object Tracking using Selective Deep Appearance Matching. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
MHT_DAM
11. using public detections
25.0
32.4
±15.6
45.316.0% 43.8% 9,06432,060435 (9.1)826 (17.3)0.7Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
LP_SSVM
12. using public detections
35.8
25.2
±13.7
34.05.8% 53.0% 8,36936,932646 (16.2)849 (21.3)41.3Public
S. Wang, C. Fowlkes. Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions. In International Journal of Computer Vision, 2016.
JPDA_m
13. using public detections
34.3
23.8
±15.1
33.85.0% 58.1% 6,37340,084365 (10.5)869 (25.0)32.6Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
SLTV15
14. online method using public detections
30.8
27.6
±15.1
40.37.2% 51.9% 6,58137,566358 (9.2)884 (22.7)20.9Public
Gwangju Institute of Science and Technology(GIST), Machine Learning and Vision Laboratory
CNNTCM
15. using public detections
29.0
29.6
±13.9
36.811.2% 44.0% 7,78634,733712 (16.4)943 (21.7)1.7Public
B. Wang, K. L. Chan, L. Wang, B. Shuai, Z. Zuo, T. Liu, G. Wang. Joint Learning of Convolutional Neural Networks and Temporally Constrained Metrics for Tracklet Association. In DeepVision Workshop (CVPR), 2016.
TSMLCDEnew
16. using public detections
24.3
34.3
±13.1
44.114.0% 39.4% 7,86931,908618 (12.9)959 (20.0)6.5Public
B. Wang, G. Wang, K. L. Chan, L. Wang. Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation. In arXiv:1511.06654, 2015.
TSN
17. using public detections
25.8
35.5
±12.1
43.014.4% 43.6% 5,68233,515454 (10.0)967 (21.3)0.8Public
Anonymous submission
JointMC
18. using public detections
22.1
35.6
±18.9
45.123.2% 39.3% 10,58028,508457 (8.5)969 (18.1)0.6Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
MCF_PHD
19. using public detections
28.1
29.9
±20.0
38.211.9% 44.0% 8,89233,529656 (14.4)989 (21.8)12.2Public
N. Wojke, D. Paulus. Global data association for the Probability Hypothesis Density filter using network flows. In 2016 IEEE International Conference on Robotics and Automation, ICRA, 2016.
GSCR
20. online method using public detections
42.9
15.8
±10.5
27.91.8% 61.0% 7,59743,633514 (17.7)1,010 (34.8)28.1Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Online multi-person tracking based on global sparse collaborative representations. In ICIP, 2015.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
CEM
21. using public detections
42.6
19.3
±17.5
0.08.5% 46.5% 14,18034,591813 (18.6)1,023 (23.4)1.1Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
HAM_INTP15
22. online method using public detections
26.0
28.6
±13.8
41.410.0% 44.0% 7,48535,910460 (11.1)1,038 (25.0)18.7Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
DAC_min
23. online method using public detections
32.6
26.1
±13.3
36.96.8% 50.1% 8,15036,736519 (12.9)1,046 (26.0)11.6Public
GIST
MotiCon
24. using public detections
47.1
23.1
±16.4
29.44.7% 52.0% 10,40435,8441,018 (24.4)1,061 (25.5)1.4Public
L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, S. Savarese. Learning an image-based motion context for multiple people tracking. In CVPR, 2014.
siam
25. online method using public detections
32.9
33.0
±17.0
36.28.9% 43.3% 5,10135,190853 (20.0)1,078 (25.2)1.9Public
Anonymous submission
LFNF
26. using public detections
31.3
31.6
±12.3
33.19.6% 41.7% 5,94335,095961 (22.4)1,106 (25.8)4.0Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
DAC_min
27. online method using public detections
31.3
26.1
±13.6
37.58.9% 48.1% 9,47835,382539 (12.7)1,115 (26.3)11.6Public
DSA_MOT
28. online method using public detections
27.4
29.4
±13.0
38.210.0% 45.1% 7,69135,146545 (12.7)1,133 (26.5)9.6Public
Anonymous submission
mLK
29. online method using public detections
21.5
35.1
±12.9
47.512.3% 38.3% 5,67833,815383 (8.5)1,175 (26.1)1.0Public
Yuan Zhang, Di Xie and Shiliang Pu (Hikvision Research Institute)
RSCNN
30. using public detections
31.4
29.5
±23.9
37.012.9% 36.3% 11,86630,474976 (19.4)1,176 (23.3)4.0Public
Heba Mahgoub, Khaled Mostafa, Khaled T. Wassif and Ibrahim Farag, “Multi-Target Tracking Using Hierarchical Convolutional Features and Motion Cues” International Journal of Advanced Computer Science and Applications(IJACSA), 8(11), 2017.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
SCEA
31. online method using public detections
33.9
29.1
±12.2
37.28.9% 47.3% 6,06036,912604 (15.1)1,182 (29.6)6.8Public
J. Yoon, C. Lee, M. Yang, K. Yoon. Online Multi-object Tracking via Structural Constraint Event Aggregation. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
TripBFT15
32. online method using public detections
26.0
37.1
±15.3
48.412.6% 39.7% 8,30529,732580 (11.2)1,193 (23.1)1.0Public
Anonymous submission
SAS_MOT15
33. using public detections
46.3
22.2
±13.8
27.23.1% 61.6% 5,59141,531700 (21.6)1,240 (38.3)8.9Public
Submission id 177
OMT_DFH
34. online method using public detections
36.8
21.2
±17.2
37.37.1% 46.5% 13,21834,657563 (12.9)1,255 (28.8)28.6Public
J. Ju, D. Kim, B. Ku, D. Han, H. Ko. Online multi-object tracking with efficient track drift and fragmentation handling. In J. Opt. Soc. Am. A, 2017.
AP_HWDPL_p
35. online method using public detections
17.3
38.5
±9.9
47.18.7% 37.4% 4,00533,203586 (12.8)1,263 (27.5)6.7Public
C. Long, A. Haizhou, S. Chong, Z. Zijie, B. Bo. Online Multi-Object Tracking with Convolutional Neural Networks. In 2017 IEEE International Conference on Image Processing (ICIP), 2017.
GMPHD
36. online method using public detections
42.6
18.5
±12.7
28.43.9% 55.3% 7,86441,766459 (14.3)1,266 (39.5)19.8Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
HybridDAT
37. online method using public detections
21.8
35.0
±15.0
47.711.4% 42.2% 8,45531,140358 (7.3)1,267 (25.7)4.6Public
M. Yang, Y. Jia. A Hybrid Data Association Framework for Robust Online Multi-Object Tracking. In IEEE Transactions on Image Processing, 2016.
CRF_RNN15
38. using public detections
19.4
38.9
±15.4
49.320.9% 29.4% 10,66926,291591 (10.3)1,270 (22.2)1.3Public
Anonymous submission
RMOT
39. online method using public detections
47.8
18.6
±17.5
32.65.3% 53.3% 12,47336,835684 (17.1)1,282 (32.0)7.9Public
J. Yoon, H. Yang, J. Lim, K. Yoon. Bayesian Multi-Object Tracking Using Motion Context from Multiple Objects. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
TENSOR
40. using public detections
44.7
24.3
±13.2
24.15.5% 46.6% 6,64438,5821,271 (34.2)1,304 (35.1)24.0Public
X. Shi, H. Ling, Y. Pang, W. Hu, P. Chu, J. Xing, Rank-1 Tensor Approximation for High-Order Association in Multi-Target Tracking. IJCV, 2019.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
SST_MOT15
41. online method using public detections
30.2
35.8
±19.3
39.67.8% 39.0% 4,06533,6691,728 (38.2)1,312 (29.0)6.3Public
Shijie Sun, Naveed Akhtar, Ajmal Mian
SiameseCNN
42. using public detections
33.7
29.0
±15.1
34.38.5% 48.4% 5,16037,798639 (16.6)1,316 (34.2)52.8Public
Laura Leal-Taixé, Cristian Canton-Ferrer, Konrad Schindler. Learning by Tracking: Siamese CNN for Robust Target Association. DeepVision Workshop (CVPR), Las Vegas (Nevada, USA), June 2016.
QuadMOT
43. using public detections
26.8
33.8
±14.8
40.412.9% 36.9% 7,89832,061703 (14.7)1,430 (29.9)3.7Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
AM
44. online method using public detections
21.1
34.3
±13.7
48.311.4% 43.4% 5,15434,848348 (8.0)1,463 (33.8)0.5Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
cf_mdp
45. online method using public detections
19.2
31.4
±14.7
43.716.1% 34.3% 10,11831,284718 (14.6)1,469 (29.9)450.4Public
Anonymous submission
EAMTTpub
46. online method using public detections
42.3
22.3
±14.2
32.85.4% 52.7% 7,92438,982833 (22.8)1,485 (40.6)12.2Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
MDP
47. online method using public detections
29.8
30.3
±14.6
44.713.0% 38.4% 9,71732,422680 (14.4)1,500 (31.8)1.1Public
Y. Xiang, A. Alahi, S. Savarese. Learning to Track: Online Multi-Object Tracking by Decision Making. In International Conference on Computer Vision (ICCV), 2015.
TDAM
48. online method using public detections
27.0
33.0
±9.8
46.113.3% 39.1% 10,06430,617464 (9.2)1,506 (30.0)5.9Public
M. Yang, Y. Jia. Temporal dynamic appearance modeling for online multi-person tracking. In Computer Vision and Image Understanding, 2016.
TBSS15
49. online method using public detections
36.0
29.2
±12.5
37.26.8% 43.8% 6,06836,779649 (16.2)1,508 (37.6)11.5Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
RAR15pub
50. online method using public detections
23.9
35.1
±12.5
45.413.0% 42.3% 6,77132,717381 (8.1)1,523 (32.6)5.4Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
TBX
51. using public detections
42.3
27.5
±13.3
33.810.4% 45.8% 7,96835,810759 (18.2)1,528 (36.6)0.1Public
R. Henschel, L. Leal-Taixé, B. Rosenhahn, K. Schindler. Tracking with multi-level features. In arXiv:1607.07304, 2016.
DEEPDA_MOT
52. online method using public detections
42.2
22.5
±17.7
25.96.4% 62.0% 7,34639,0921,159 (31.9)1,538 (42.3)172.8Public
K. Yoon, D. Kim, Y. Yoon, M. Jeon. Data Association for Multi-Object Tracking via Deep Neural Networks. In Sensors, 2019.
TSDA_OAL
53. online method using public detections
41.9
18.6
±17.6
36.19.4% 42.3% 16,35032,853806 (17.3)1,544 (33.2)19.7Public
H. Ko. Online multi-person tracking with two-stage data association and online appearance model learning. In IET Computer Vision, 2017.
DCCRF
54. online method using public detections
28.4
33.6
±11.0
39.110.4% 37.6% 5,91734,002866 (19.4)1,566 (35.1)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
CDA_DDALpb
55. online method using public detections
26.8
32.8
±10.6
38.89.7% 42.2% 4,98335,690614 (14.7)1,583 (37.8)2.3Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
CMOT
56. online method using public detections
28.7
27.6
±14.0
43.310.5% 49.0% 9,45134,207800 (18.0)1,584 (35.7)5,783.0Public
Anonymous submission
TripT15
57. online method using public detections
30.6
35.7
±14.9
47.711.1% 39.8% 8,72930,152655 (12.9)1,614 (31.7)1.1Public
Anonymous submission
BnW
58. online method using public detections
19.8
42.9
±14.0
47.925.4% 25.2% 8,33825,813926 (16.0)1,652 (28.5)4.0Public
Anonymous submission
oICF
59. online method using public detections
38.0
27.1
±14.9
40.56.4% 48.7% 7,59436,757454 (11.3)1,660 (41.3)1.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
DCOR
60. online method using public detections
42.0
22.4
±12.1
24.73.3% 57.4% 5,60341,410634 (19.4)1,686 (51.7)28.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
CF_MCMC
61. using public detections
31.6
31.4
±11.3
36.410.3% 40.9% 8,79832,541814 (17.3)1,711 (36.4)3.2Public
Anonymous submission
LP2D
62. using public detections
45.4
19.8
±14.2
0.06.7% 41.2% 11,58036,0451,649 (39.9)1,712 (41.4)112.1Public
MOT baseline: Linear programming on 2D image coordinates.
TC_ODAL
63. online method using public detections
57.9
15.1
±15.0
0.03.2% 55.8% 12,97038,538637 (17.1)1,716 (46.0)1.7Public
S. Bae, K. Yoon. Robust Online Multi-Object Tracking based on Tracklet Confidence and Online Discriminative Appearance Learning. In CVPR, 2014.
ELP
64. using public detections
42.0
25.0
±10.8
26.27.5% 43.8% 7,34537,3441,396 (35.6)1,804 (46.0)5.7Public
N. McLaughlin, J. Martinez Del Rincon, P. Miller. Enhancing Linear Programming with Motion Modeling for Multi-target Tracking. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
YT
65. using public detections
47.3
23.5
±11.6
26.84.4% 49.5% 5,53740,2101,270 (36.8)1,817 (52.6)34.4Public
Anonymous submission
EDA_GNN
66. online method using public detections
39.1
21.8
±13.8
27.89.0% 40.2% 11,97034,5871,488 (34.0)1,851 (42.4)56.4Public
Paper ID 2713
ALExTRAC
67. using public detections
52.4
17.0
±12.1
17.33.9% 52.4% 9,23339,9331,859 (53.1)1,872 (53.5)3.7Public
A. Bewley, L. Ott, F. Ramos, B. Upcroft. ALExTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains. In International Conference on Robotics and Automation (ICRA), (to appear) 2016.
TBD
68. using public detections
57.2
15.9
±17.6
0.06.4% 47.9% 14,94334,7771,939 (44.7)1,963 (45.2)0.7Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
CppSORT
69. online method using public detections
43.9
21.7
±11.8
26.83.7% 49.1% 8,42238,4541,231 (32.9)2,005 (53.6)1,112.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
AMIR15
70. online method using public detections
22.4
37.6
±12.5
46.015.8% 26.8% 7,93329,3971,026 (19.7)2,024 (38.8)1.9Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
RNN_LSTM
71. online method using public detections
49.4
19.0
±15.2
17.15.5% 45.6% 11,57836,7061,490 (37.0)2,081 (51.7)165.2Public
A. Milan, S. Rezatofighi, A. Dick, I. Reid, K. Schindler. Online Multi-Target Tracking using Recurrent Neural Networks. In AAAI, 2017.
SMOT
72. using public detections
58.8
18.2
±10.3
0.02.8% 54.8% 8,78040,3101,148 (33.4)2,132 (62.0)2.7Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
PHD_GSDL
73. online method using public detections
35.1
30.5
±14.9
38.87.6% 41.2% 6,53435,284879 (20.6)2,208 (51.9)8.2Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
ZRT
74. online method using public detections
42.1
22.8
±19.3
37.89.7% 38.4% 14,42331,9321,080 (22.5)2,267 (47.2)5.3Public
Anonymous submission
RETR15
75. online method using public detections
41.2
20.8
±14.5
37.49.2% 38.6% 15,50131,9881,172 (24.4)2,325 (48.5)7.2Public
Anonymous submission
MTSTracker
76. online method using public detections
41.1
20.6
±18.2
31.99.0% 36.9% 15,16132,2121,387 (29.2)2,357 (49.5)19.3Public
F. Nguyen Thi Lan Anh, F. Bremond. Multi-Object Tracking using Multi-Channel Part Appearance Representation. In International conference on Advanced video and Signal Based Surveillance, 2017.
SNM
77. online method using public detections
31.8
31.3
±16.5
38.212.6% 35.4% 8,90332,393926 (19.6)2,382 (50.4)14.8Public
Anonymous submission
MCFCOS_CNN
78. online method using public detections
42.3
25.5
±20.8
32.09.3% 34.4% 12,34431,3782,064 (42.2)2,618 (53.5)0.5Public
Anonymous submission
KCF_Simple
79. online method using public detections
51.5
18.3
±11.1
25.12.6% 49.8% 8,97639,8051,436 (40.8)2,634 (74.8)35.6Public
Anonymous submission
HSJ_Sia
80. online method using public detections
46.6
20.9
±13.0
29.24.0% 51.6% 6,45740,4771,695 (49.7)2,734 (80.1)70.3Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
LDCT
81. online method using public detections
42.6
4.7
±41.3
16.811.4% 32.5% 14,06632,15612,348 (259.1)2,918 (61.2)20.7Public
F. Solera, S. Calderara, R. Cucchiara. Learning to Divide and Conquer for Online Multi-Target Tracking. In ICCV, 2015
DS_RNN
82. online method using public detections
37.2
27.8
±11.4
29.67.1% 37.9% 6,90335,2382,192 (51.4)3,011 (70.6)19.3Public
Anonymous submission
DP_NMS
83. using public detections
45.8
14.5
±14.5
19.76.0% 40.8% 13,17134,8144,537 (104.7)3,090 (71.3)444.8Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
EFMC
84. online method using public detections
50.5
14.9
±9.8
11.53.3% 50.5% 5,58341,0855,623 (169.7)3,443 (103.9)24.6Public
Anonymous submission
Bar_dist2
85. online method using public detections
40.3
20.1
±14.5
21.77.4% 36.8% 11,16134,8743,084 (71.3)3,823 (88.4)215.8Public
Anonymous submission
Bar_dist
86. online method using public detections
42.4
18.0
±16.0
17.65.7% 35.9% 10,01936,2224,161 (101.4)5,043 (122.9)2,891.5Public
Anonymous submission

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
11578372161440

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

TUD-Crossing

TUD-Crossing

(59.9% MOTA)

PETS09-S2L2

PETS09-S2L2

(40.2% MOTA)

ETH-Jelmoli

ETH-Jelmoli

(36.5% MOTA)

...

...

Venice-1

Venice-1

(20.2% MOTA)

ADL-Rundle-1

ADL-Rundle-1

(15.5% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.