2D MOT 2015 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!


Benchmark Statistics

TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
JPDA_OP
1. online method
3.6
±0.0
7.50.4% 96.1% 1,02458,18929 (5.5)119 (22.5)Public
Anonymous submission
GSCR
2. online method
15.8
±0.0
27.91.8% 61.0% 7,59743,633514 (17.7)1,010 (34.8)Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Online multi-person tracking based on global sparse collaborative representations. In ICIP, 2015.
TC_SIAMESE
3. using public detections
20.2
±0.0
32.62.6% 67.5% 6,12742,596294 (9.6)825 (26.9)Public
Y. Yoon, Y. Song, K. Yoon, M. Jeon. Online Multiple-Object Tracking using Selective Deep Appearance Matching. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2018.
TFMOT
4. online method using public detections
23.8
±0.0
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
GMPHD
5. using public detections
18.5
±0.0
28.43.9% 55.3% 7,86441,766459 (14.3)1,266 (39.5)Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
SAS_MOT15
6. using public detections
22.2
±0.0
27.23.1% 61.6% 5,59141,531700 (21.6)1,240 (38.3)Public
A. Maksai, P. Fua. Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking. In CVPR, 2019.
DCOR
7. online method using public detections
22.4
±0.0
24.73.3% 57.4% 5,60341,410634 (19.4)1,686 (51.7)Public
Anonymous submission
FP_H
8.
23.4
±0.0
33.73.7% 55.9% 5,78240,719538 (16.0)1,875 (55.6)Public
Anonymous submission
TO
9. online method using public detections
25.7
±0.0
32.74.3% 57.4% 4,77940,511383 (11.2)600 (17.6)Public
S. Manen, R. Timofte, D. Dai, L. Gool. Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016.
HSJ_Sia
10. online method using public detections
20.9
±0.0
29.24.0% 51.6% 6,45740,4771,695 (49.7)2,734 (80.1)Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
SMOT
11. online method
18.2
±0.0
0.02.8% 54.8% 8,78040,3101,148 (33.4)2,132 (62.0)Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
LINF1
12. online method using public detections
24.5
±0.0
34.85.5% 64.6% 5,86440,207298 (8.6)744 (21.5)Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
DPT
13. using public detections
16.1
±0.0
27.55.0% 50.3% 10,33040,1541,076 (31.1)1,794 (51.8)Public
JPDA_m
14. online method using public detections
23.8
±0.0
33.85.0% 58.1% 6,37340,084365 (10.5)869 (25.0)Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
PoMOT
15. using public detections
16.7
±0.0
28.85.0% 50.3% 10,18540,025968 (27.8)1,748 (50.2)Public
Anonymous submission
ALExTRAC
16. using public detections
17.0
±0.0
17.33.9% 52.4% 9,23339,9331,859 (53.1)1,872 (53.5)Public
A. Bewley, L. Ott, F. Ramos, B. Upcroft. ALExTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains. In International Conference on Robotics and Automation (ICRA), (to appear) 2016.
KCF_Simple
17. using public detections
18.3
±0.0
25.12.6% 49.8% 8,97639,8051,436 (40.8)2,634 (74.8)Public
Anonymous submission
RKCF
18. online method using public detections
16.8
±0.0
29.05.5% 50.1% 10,33639,805980 (27.8)1,750 (49.7)Public
Anonymous submission
AdTobKF
19. using public detections
24.8
±0.0
34.54.0% 52.0% 6,20139,321666 (18.5)1,300 (36.1)Public
K. Loumponias, A. Dimou, N. Vretos, P. Daras. Adaptive Tobit Kalman-Based Tracking. In 2018 14th International Conference on Signal-Image Technology \& Internet-Based Systems (SITIS), 2018.
DEEPDA_MOT
20. using public detections
22.5
±0.0
25.96.4% 62.0% 7,34639,0921,159 (31.9)1,538 (42.3)Public
K. Yoon, D. Kim, Y. Yoon, M. Jeon. Data Association for Multi-Object Tracking via Deep Neural Networks. In Sensors, 2019.
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
SegTrack
21. online method using public detections
22.5
±0.0
31.55.8% 63.9% 7,89039,020697 (19.1)737 (20.2)Public
A. Milan, L. Leal-Taixé, K. Schindler, I. Reid. Joint Tracking and Segmentation of Multiple Targets. In CVPR, 2015.
EAMTTpub
22.
22.3
±0.0
32.85.4% 52.7% 7,92438,982833 (22.8)1,485 (40.6)Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
BiGRU1
23. using public detections
26.1
±0.0
32.26.5% 48.8% 5,76138,948719 (19.6)2,046 (55.9)Public
Anonymous submission
Goturn15
24. online method using public detections
23.9
±0.0
22.33.6% 66.4% 7,02138,750965 (26.1)1,237 (33.5)Public
Anonymous submission
TENSOR
25. using public detections
24.3
±0.0
24.15.5% 46.6% 6,64438,5821,271 (34.2)1,304 (35.1)Public
X. Shi, H. Ling, Y. Pang, W. Hu, P. Chu, J. Xing. Rank-1 Tensor Approximation for High-Order Association in Multi-target Tracking. In IJCV, 2019.
CppSORT
26. using public detections
21.7
±0.0
26.83.7% 49.1% 8,42238,4541,231 (32.9)2,005 (53.6)Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
HAM_SADF
27. using public detections
25.2
±0.0
37.85.7% 58.3% 7,33038,275357 (9.5)745 (19.8)Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
DCO_X
28. using public detections
19.6
±0.0
31.55.1% 54.9% 10,65238,232521 (13.8)819 (21.7)Public
A. Milan, K. Schindler, S. Roth. Multi-Target Tracking by Discrete-Continuous Energy Minimization. In IEEE PAMI, 2016.
SiameseCNN
29. online method
29.0
±0.0
34.38.5% 48.4% 5,16037,798639 (16.6)1,316 (34.2)Public
Laura Leal-Taixé, Cristian Canton-Ferrer, Konrad Schindler. Learning by Tracking: Siamese CNN for Robust Target Association. DeepVision Workshop (CVPR), Las Vegas (Nevada, USA), June 2016.
SLTV15
30. using public detections
27.6
±0.0
40.37.2% 51.9% 6,58137,566358 (9.2)884 (22.7)Public
Gwangju Institute of Science and Technology(GIST), Machine Learning and Vision Laboratory
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
ELP
31.
25.0
±0.0
26.27.5% 43.8% 7,34537,3441,396 (35.6)1,804 (46.0)Public
N. McLaughlin, J. Martinez Del Rincon, P. Miller. Enhancing Linear Programming with Motion Modeling for Multi-target Tracking. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
LP_SSVM
32. online method
25.2
±0.0
34.05.8% 53.0% 8,36936,932646 (16.2)849 (21.3)Public
S. Wang, C. Fowlkes. Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions. In International Journal of Computer Vision, 2016.
SCEA
33.
29.1
±0.0
37.28.9% 47.3% 6,06036,912604 (15.1)1,182 (29.6)Public
J. Yoon, C. Lee, M. Yang, K. Yoon. Online Multi-object Tracking via Structural Constraint Event Aggregation. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
RMOT
34. using public detections
18.6
±0.0
32.65.3% 53.3% 12,47336,835684 (17.1)1,282 (32.0)Public
J. Yoon, H. Yang, J. Lim, K. Yoon. Bayesian Multi-Object Tracking Using Motion Context from Multiple Objects. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
TBSS15
35. using public detections
29.2
±0.0
37.26.8% 43.8% 6,06836,779649 (16.2)1,508 (37.6)Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
oICF
36.
27.1
±0.0
40.56.4% 48.7% 7,59436,757454 (11.3)1,660 (41.3)Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
RNN_LSTM
37.
19.0
±0.0
17.15.5% 45.6% 11,57836,7061,490 (37.0)2,081 (51.7)Public
A. Milan, S. Rezatofighi, A. Dick, I. Reid, K. Schindler. Online Multi-Target Tracking using Recurrent Neural Networks. In AAAI, 2017.
LP2D
38. online method using public detections
19.8
±0.0
0.06.7% 41.2% 11,58036,0451,649 (39.9)1,712 (41.4)Public
MOT baseline: Linear programming on 2D image coordinates.
HAM_INTP15
39. online method
28.6
±0.0
41.410.0% 44.0% 7,48535,910460 (11.1)1,038 (25.0)Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
MotiCon
40.
23.1
±0.0
29.44.7% 52.0% 10,40435,8441,018 (24.4)1,061 (25.5)Public
L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, S. Savarese. Learning an image-based motion context for multiple people tracking. In CVPR, 2014.
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
GMMA_intp
41. online method
27.3
±0.0
36.66.5% 43.1% 7,84835,817987 (23.7)1,848 (44.3)Public
Y. Song, Y. Yoon, K. Yoon, M. Jeon. Online and Real-Time Tracking with the GMPHD Filter using Group Management and Relative Motion Analysis. In Proc. IEEE Int. Workshop Traffic Street Surveill. Safety Secur. (AVSS), 2018.
TBX
42. using public detections
27.5
±0.0
33.810.4% 45.8% 7,96835,810759 (18.2)1,528 (36.6)Public
R. Henschel, L. Leal-Taixé, B. Rosenhahn, K. Schindler. Tracking with multi-level features. In arXiv:1607.07304, 2016.
CDA_DDALpb
43. using public detections
32.8
±0.0
38.89.7% 42.2% 4,98335,690614 (14.7)1,583 (37.8)Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
DSA_MOT
44.
29.4
±0.0
41.29.2% 50.2% 7,70535,364329 (7.8)789 (18.6)Public
Anonymous submission
PHD_GSDL
45. using public detections
30.5
±0.0
38.87.6% 41.2% 6,53435,284879 (20.6)2,208 (51.9)Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
UN_DAM
46. online method using public detections
29.7
±0.0
41.49.2% 49.9% 7,61035,269318 (7.5)674 (15.8)Public
Multi Object Tracking using Deep Structural Cost Minimization in Data Association
siam
47. online method using public detections
33.0
±0.0
36.28.9% 43.3% 5,10135,190853 (20.0)1,078 (25.2)Public
Anonymous submission
DAC_min
48. online method using public detections
28.3
±0.0
38.39.8% 45.5% 8,39635,122543 (12.7)1,162 (27.1)Public
LFNF
49. online method
31.6
±0.0
33.19.6% 41.7% 5,94335,095961 (22.4)1,106 (25.8)Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
GMPHD_OGM
50.
30.7
±0.0
38.811.5% 38.1% 6,50235,0301,034 (24.1)1,351 (31.4)Public
Y. Song, K. Yoon, Y. Yoon, K. Yow, M. Jeon. Online Multi-Object Tracking with GMPHD Filter and Occlusion Group Management. In IEEE Access, 2019.
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
AM
51. online method using public detections
34.3
±0.0
48.311.4% 43.4% 5,15434,848348 (8.0)1,463 (33.8)Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
DP_NMS
52. using public detections
14.5
±0.0
19.76.0% 40.8% 13,17134,8144,537 (104.7)3,090 (71.3)Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
TBD
53. using public detections
15.9
±0.0
0.06.4% 47.9% 14,94334,7771,939 (44.7)1,963 (45.2)Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
CNNTCM
54.
29.6
±0.0
36.811.2% 44.0% 7,78634,733712 (16.4)943 (21.7)Public
B. Wang, K. L. Chan, L. Wang, B. Shuai, Z. Zuo, T. Liu, G. Wang. Joint Learning of Convolutional Neural Networks and Temporally Constrained Metrics for Tracklet Association. In DeepVision Workshop (CVPR), 2016.
OMT_DFH
55. using public detections
21.2
±0.0
37.37.1% 46.5% 13,21834,657563 (12.9)1,255 (28.8)Public
J. Ju, D. Kim, B. Ku, D. Han, H. Ko. Online multi-object tracking with efficient track drift and fragmentation handling. In J. Opt. Soc. Am. A, 2017.
EDA_GNN
56. using public detections
21.8
±0.0
27.89.0% 40.2% 11,97034,5871,488 (34.0)1,851 (42.4)Public
Paper ID 2713
DCCRF
57. online method using public detections
33.6
±0.0
39.110.4% 37.6% 5,91734,002866 (19.4)1,566 (35.1)Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
mLK
58. online method
35.1
±0.0
47.512.3% 38.3% 5,67833,815383 (8.5)1,175 (26.1)Public
Yuan Zhang, Di Xie and Shiliang Pu (Hikvision Research Institute)
MCF_PHD
59. using public detections
29.9
±0.0
38.211.9% 44.0% 8,89233,529656 (14.4)989 (21.8)Public
N. Wojke, D. Paulus. Global data association for the Probability Hypothesis Density filter using network flows. In 2016 IEEE International Conference on Robotics and Automation, ICRA, 2016.
AP_HWDPL_p
60. using public detections
38.5
±0.0
47.18.7% 37.4% 4,00533,203586 (12.8)1,263 (27.5)Public
C. Long, A. Haizhou, S. Chong, Z. Zijie, B. Bo. Online Multi-Object Tracking with Convolutional Neural Networks. In 2017 IEEE International Conference on Image Processing (ICIP), 2017.
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
TSDA_OAL
61. online method using public detections
18.6
±0.0
36.19.4% 42.3% 16,35032,853806 (17.3)1,544 (33.2)Public
H. Ko. Online multi-person tracking with two-stage data association and online appearance model learning. In IET Computer Vision, 2017.
RAR15pub
62. using public detections
35.1
±0.0
45.413.0% 42.3% 6,77132,717381 (8.1)1,523 (32.6)Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
NOMT
63.
33.7
±0.0
44.612.2% 44.0% 7,76232,547442 (9.4)823 (17.5)Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
CF_MCMC
64. online method using public detections
31.4
±0.0
36.410.3% 40.9% 8,79832,541814 (17.3)1,711 (36.4)Public
Anonymous submission
MDP
65. using public detections
30.3
±0.0
44.713.0% 38.4% 9,71732,422680 (14.4)1,500 (31.8)Public
Y. Xiang, A. Alahi, S. Savarese. Learning to Track: Online Multi-Object Tracking by Decision Making. In International Conference on Computer Vision (ICCV), 2015.
SNM
66. online method using public detections
31.3
±0.0
38.212.6% 35.4% 8,90332,393926 (19.6)2,382 (50.4)Public
Anonymous submission
MTSTracker
67. online method using public detections
20.6
±0.0
31.99.0% 36.9% 15,16132,2121,387 (29.2)2,357 (49.5)Public
F. Nguyen Thi Lan Anh, F. Bremond. Multi-Object Tracking using Multi-Channel Part Appearance Representation. In International conference on Advanced video and Signal Based Surveillance, 2017.
dSRPN15
68. online method
33.3
±0.0
32.79.3% 43.7% 7,82532,211919 (19.3)1,276 (26.8)Public
Anonymous submission
LDCT
69. online method using public detections
4.7
±0.0
16.811.4% 32.5% 14,06632,15612,348 (259.1)2,918 (61.2)Public
F. Solera, S. Calderara, R. Cucchiara. Learning to Divide and Conquer for Online Multi-Target Tracking. In ICCV, 2015
QuadMOT
70.
33.8
±0.0
40.412.9% 36.9% 7,89832,061703 (14.7)1,430 (29.9)Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
MHT_DAM
71. online method using public detections
32.4
±0.0
45.316.0% 43.8% 9,06432,060435 (9.1)826 (17.3)Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
MHT__ReID
72. online method using public detections
33.0
±0.0
46.417.6% 42.6% 8,72532,046421 (8.8)851 (17.8)Public
Anonymous submission
TSMLCDEnew
73. using public detections
34.3
±0.0
44.114.0% 39.4% 7,86931,908618 (12.9)959 (20.0)Public
B. Wang, G. Wang, K. L. Chan, L. Wang. Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation. In arXiv:1511.06654, 2015.
STRN
74. online method using public detections
38.1
±0.0
46.611.5% 33.4% 5,45131,5711,033 (21.2)2,665 (54.8)Public
J. Xu, Y. Cao, Z. Zhang, H. Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. In ICCV, 2019.
MMHT15
75. online method using public detections
29.8
±0.0
38.012.1% 38.0% 10,54831,3901,189 (24.3)1,612 (33.0)Public
Anonymous submission
HybridDAT
76. online method using public detections
35.0
±0.0
47.711.4% 42.2% 8,45531,140358 (7.3)1,267 (25.7)Public
M. Yang, Y. Jia. A Hybrid Data Association Framework for Robust Online Multi-Object Tracking. In IEEE Transactions on Image Processing, 2016.
SRPN
77. online method
31.0
±0.0
30.712.6% 41.7% 10,24131,0991,062 (21.5)1,370 (27.7)Public
Anonymous submission
TDAM
78. online method using public detections
33.0
±0.0
46.113.3% 39.1% 10,06430,617464 (9.2)1,506 (30.0)Public
M. Yang, Y. Jia. Temporal dynamic appearance modeling for online multi-person tracking. In Computer Vision and Image Understanding, 2016.
RSCNN
79. online method using public detections
29.5
±0.0
37.012.9% 36.3% 11,86630,474976 (19.4)1,176 (23.3)Public
Heba Mahgoub, Khaled Mostafa, Khaled T. Wassif and Ibrahim Farag, “Multi-Target Tracking Using Hierarchical Convolutional Features and Motion Cues” International Journal of Advanced Computer Science and Applications(IJACSA), 8(11), 2017.
DeepMP
80. online method
40.5
±0.0
28.816.8% 35.2% 6,27929,654599 (11.6)1,034 (20.0)Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
KCF
81. using public detections
38.9
±0.0
44.516.6% 31.5% 7,32129,501720 (13.9)1,440 (27.7)Public
P. Chu, H. Fan, C. Tan, H. Ling. Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment. In WACV, 2019.
AMIR15
82. using public detections
37.6
±0.0
46.015.8% 26.8% 7,93329,3971,026 (19.7)2,024 (38.8)Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
INARLA
83.
34.7
±0.0
42.112.5% 30.0% 9,85529,1581,112 (21.2)2,848 (54.2)Public
H. Wu, Y. Hu, K. Wang, H. Li, L. Nie, H. Cheng. Instance-aware representation learning and association for online multi-person tracking. In Pattern Recognition, 2019.
JointMC
84. using public detections
35.6
±0.0
45.123.2% 39.3% 10,58028,508457 (8.5)969 (18.1)Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
SMOTe
85. online method using public detections
28.0
±0.0
45.415.0% 30.8% 15,88127,372977 (17.6)2,106 (38.0)Public
Anonymous submission
TLO
86. online method using public detections
41.3
±0.0
46.115.7% 34.5% 8,00027,210852 (15.3)1,405 (25.2)Public
Anonymous submission
Tracktor15
87. using public detections
44.1
±0.0
46.718.0% 26.2% 6,47726,5771,318 (23.2)1,790 (31.5)Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
TLO15
88. online method using public detections
40.0
±0.0
44.317.1% 28.8% 9,34926,3281,207 (21.1)1,624 (28.4)Public
Anonymous submission
CRF_RNN15
89. using public detections
38.9
±0.0
49.320.9% 29.4% 10,66926,291591 (10.3)1,270 (22.2)Public
Anonymous submission
CRFTrack_
90. online method
40.0
±0.0
49.623.0% 28.6% 10,29525,917658 (11.4)1,508 (26.1)Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
SORT_Y
91. using public detections
45.9
±0.0
47.220.5% 27.0% 6,24725,6691,346 (23.1)1,436 (24.7)Public
Anonymous submission
HOHOTRACK
92. using public detections
26.8
±0.0
32.928.6% 16.9% 18,99424,5491,411 (23.5)3,417 (56.9)Public
Anonymous submission
MHTREID15
93. online method using public detections
40.0
±0.0
49.429.7% 24.4% 12,78023,378684 (11.0)1,112 (17.9)Public
Anonymous submission
FFT15
94. using public detections
46.3
±0.0
48.829.1% 23.2% 9,87021,9131,232 (19.1)1,638 (25.5)Public
Anonymous submission
MPNTrack15
95.
48.3
±0.0
56.532.2% 24.3% 9,64021,629504 (7.8)1,074 (16.6)Public
Anonymous submission
TC_ODAL
96. online method using public detections
48.3
±0.0
56.532.2% 24.3% 9,64021,629504 (7.8)1,074 (16.6)Public
S. Bae, K. Yoon. Robust Online Multi-Object Tracking based on Tracklet Confidence and Online Discriminative Appearance Learning. In CVPR, 2014.
CEM
97. online method
48.3
±0.0
56.532.2% 24.3% 9,64021,629504 (7.8)1,074 (16.6)Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
Lif_T
98. online method using public detections
52.5
±0.0
60.033.8% 25.8% 6,83721,610730 (11.3)1,047 (16.2)Public
Anonymous submission
MR
99. using public detections
36.6
±0.0
47.233.1% 21.5% 16,69621,428850 (13.1)1,156 (17.8)Public
Anonymous submission
ISE_MOT15R
100.
46.7
±0.0
51.629.4% 25.7% 11,00320,839878 (13.3)1,265 (19.1)Public
MIFT
SequencesFramesTrajectoriesBoxes
11578372161440

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

TUD-Crossing

TUD-Crossing

(0.0% MOTA)

PETS09-S2L2

PETS09-S2L2

(0.0% MOTA)

ETH-Jelmoli

ETH-Jelmoli

(0.0% MOTA)

...

...

KITTI-19

KITTI-19

(0.0% MOTA)

Venice-1

Venice-1

(0.0% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.