2D MOT 2015 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFP FNID Sw.FragHzDetector
JointMC
1. using public detections
17.0
35.6
±18.9
45.123.2% 39.3% 10,58028,508457 (8.5)969 (18.1)0.6Public
M. Keuper, S. Tang, Z. Yu, B. Andres, T. Brox, B. Schiele. A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects. In CoRR, 2016.
AMIR15
2. online method using public detections
18.6
37.6
±12.5
46.015.8% 26.8% 7,93329,3971,026 (19.7)2,024 (38.8)1.9Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In arXiv preprint arXiv:1701.01909, 2017.
RSCNN
3. using public detections
24.8
29.5
±23.9
37.012.9% 36.3% 11,86630,474976 (19.4)1,176 (23.3)4.0Public
Anonymous submission
TDAM
4. online method using public detections
21.8
33.0
±9.8
46.113.3% 39.1% 10,06430,617464 (9.2)1,506 (30.0)5.9Public
M. Yang, Y. Jia. Temporal dynamic appearance modeling for online multi-person tracking. In Computer Vision and Image Understanding, 2016.
HybridDAT
5. online method using public detections
16.2
35.0
±15.0
47.711.4% 42.2% 8,45531,140358 (7.3)1,267 (25.7)4.6Public
M. Yang, Y. Jia. A Hybrid Data Association Framework for Robust Online Multi-Object Tracking. In IEEE Transactions on Image Processing, 2016.
HAF
6. using public detections
17.5
33.0
±17.8
47.416.4% 44.9% 9,59331,204376 (7.6)804 (16.3)0.6Public
Anonymous submission
EAGS
7. using public detections
11.6
34.2
±15.2
47.516.4% 45.6% 8,73531,304372 (7.6)865 (17.6)192.8Public
Enhancing Association Graph with Super-voxel for Multi-target Tracking
MCFCOS_CNN
8. online method using public detections
34.4
25.5
±20.8
32.09.3% 34.4% 12,34431,3782,064 (42.2)2,618 (53.5)0.5Public
Anonymous submission
TSMLCDEnew
9. using public detections
19.8
34.3
±13.1
44.114.0% 39.4% 7,86931,908618 (12.9)959 (20.0)6.5Public
B. Wang, G. Wang, K. L. Chan, L. Wang. Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation. In arXiv:1511.06654, 2015.
MHT_DAM
10. using public detections
19.7
32.4
±15.6
45.316.0% 43.8% 9,06432,060435 (9.1)826 (17.3)0.7Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
TrackerAvg RankMOTAIDF1MTMLFP FNID Sw.FragHzDetector
QuadMOT
11. using public detections
21.8
33.8
±14.8
40.412.9% 36.9% 7,89832,061703 (14.7)1,430 (29.9)3.7Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
MOTBKCF
12. online method using public detections
21.5
32.4
±15.3
44.614.1% 42.0% 8,91232,112501 (10.5)1,058 (22.2)0.2Public
Anonymous submission
LDCT
13. online method using public detections
35.3
4.7
±41.3
16.811.4% 32.5% 14,06632,15612,348 (259.1)2,918 (61.2)20.7Public
F. Solera, S. Calderara, R. Cucchiara. Learning to Divide and Conquer for Online Multi-Target Tracking. In ICCV, 2015
MTSTracker
14. online method using public detections
34.0
20.6
±18.2
31.99.0% 36.9% 15,16132,2121,387 (29.2)2,357 (49.5)19.3Public
F. Nguyen Thi Lan Anh, F. Bremond. Multi-Object Tracking using Multi-Channel Part Appearance Representation. In International conference on Advanced video and Signal Based Surveillance, 2017.
MDP
15. online method using public detections
24.3
30.3
±14.6
44.713.0% 38.4% 9,71732,422680 (14.4)1,500 (31.8)1.1Public
Y. Xiang, A. Alahi, S. Savarese. Learning to Track: Online Multi-Object Tracking by Decision Making. In International Conference on Computer Vision (ICCV), 2015.
CF_MCMC
16. using public detections
25.4
31.4
±11.3
36.410.3% 40.9% 8,79832,541814 (17.3)1,711 (36.4)3.2Public
Anonymous submission
NOMT
17. using public detections
17.1
33.7
±16.2
44.612.2% 44.0% 7,76232,547442 (9.4)823 (17.5)11.5Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
RAR15pub
18. online method using public detections
19.3
35.1
±12.5
45.413.0% 42.3% 6,77132,717381 (8.1)1,523 (32.6)5.4Public
Anonymous ICCV submission
TSDA_OAL
19. online method using public detections
34.3
18.6
±17.6
36.19.4% 42.3% 16,35032,853806 (17.3)1,544 (33.2)19.7Public
H. Ko. Online multi-person tracking with two-stage data association and online appearance model learning. In IET Computer Vision, 2017.
SSM_DPM
20. online method using public detections
30.5
15.1
±20.5
37.211.4% 44.5% 18,31933,193621 (13.5)1,229 (26.7)28.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFP FNID Sw.FragHzDetector
APRCNN_Pub
21. online method using public detections
13.4
38.5
±9.9
47.18.7% 37.4% 4,00533,203586 (12.8)1,263 (27.5)6.7Public
C. Long, A. Haizhou, S. Chong, Z. Zijie, B. Bo. Online Multi-Object Tracking with Convolutional Neural Networks. In 2017 IEEE International Conference on Image Processing (ICIP), 2017.
GMC
22. online method using public detections
23.1
25.0
±13.8
38.810.5% 44.4% 12,04633,441599 (13.1)1,246 (27.3)28.9Public
Anonymous submission
mLK
23. online method using public detections
16.0
35.1
±12.9
47.512.3% 38.3% 5,67833,815383 (8.5)1,175 (26.1)1.0Public
Yuan Zhang, Di Xie and Shiliang Pu (Hikvision Research Institute)
DCCRF
24. online method using public detections
23.4
33.6
±11.0
39.110.4% 37.6% 5,91734,002866 (19.4)1,566 (35.1)0.1Public
Anonymous submission
CEM
25. using public detections
34.8
19.3
±17.5
0.08.5% 46.5% 14,18034,591813 (18.6)1,023 (23.4)1.1Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
OMT_DFH
26. online method using public detections
29.6
21.2
±17.2
37.37.1% 46.5% 13,21834,657563 (12.9)1,255 (28.8)28.6Public
J. Ju, D. Kim, B. Ku, D. Han, H. Ko. Online multi-object tracking with efficient track drift and fragmentation handling. In J. Opt. Soc. Am. A, 2017.
CNNTCM
27. using public detections
23.1
29.6
±13.9
36.811.2% 44.0% 7,78634,733712 (16.4)943 (21.7)1.7Public
B. Wang, K. L. Chan, L. Wang, B. Shuai, Z. Zuo, T. Liu, G. Wang. Joint Learning of Convolutional Neural Networks and Temporally Constrained Metrics for Tracklet Association. In DeepVision Workshop (CVPR), 2016.
TBD
28. using public detections
46.7
15.9
±17.6
0.06.4% 47.9% 14,94334,7771,939 (44.7)1,963 (45.2)0.7Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
DP_NMS
29. using public detections
36.8
14.5
±14.5
19.76.0% 40.8% 13,17134,8144,537 (104.7)3,090 (71.3)444.8Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
AM
30. online method using public detections
16.6
34.3
±13.7
48.311.4% 43.4% 5,15434,848348 (8.0)1,463 (33.8)0.5Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism. In arXiv preprint arXiv:1708.02843, 2017.
TrackerAvg RankMOTAIDF1MTMLFP FNID Sw.FragHzDetector
LFNF
31. using public detections
24.8
31.6
±12.3
33.19.6% 41.7% 5,94335,095961 (22.4)1,106 (25.8)4.0Public
Anonymous submission
PHD_GSDL
32. online method using public detections
28.2
30.5
±14.9
38.87.6% 41.2% 6,53435,284879 (20.6)2,208 (51.9)8.2Public
Anonymous submission
JAM
33. online method using public detections
23.0
32.0
±14.6
39.210.3% 43.6% 5,71435,473562 (13.3)1,217 (28.8)0.0Public
Anonymous submission
CDA_DDALpb
34. online method using public detections
21.8
32.8
±10.6
38.89.7% 42.2% 4,98335,690614 (14.7)1,583 (37.8)2.3Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking, In IEEE TPAMI, 2017.
TBX
35. using public detections
35.0
27.5
±13.3
33.810.4% 45.8% 7,96835,810759 (18.2)1,528 (36.6)0.1Public
R. Henschel, L. Leal-Taixé, B. Rosenhahn, K. Schindler. Tracking with multi-level features. In arXiv:1607.07304, 2016.
MotiCon
36. using public detections
39.1
23.1
±16.4
29.44.7% 52.0% 10,40435,8441,018 (24.4)1,061 (25.5)1.4Public
L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, S. Savarese. Learning an image-based motion context for multiple people tracking. In CVPR, 2014.
RAM
37. using public detections new
34.7
23.9
±11.2
34.95.5% 38.7% 7,11536,0283,636 (87.9)4,213 (101.9)8.2Public
Anonymous submission
LP2D
38. using public detections
36.2
19.8
±14.2
0.06.7% 41.2% 11,58036,0451,649 (39.9)1,712 (41.4)112.1Public
MOT baseline: Linear programming on 2D image coordinates.
ARM
39. using public detections new
30.3
25.3
±10.5
34.94.9% 39.0% 6,06136,4783,384 (83.3)4,328 (106.5)9.6Public
Anonymous submission
STKSVD
40. online method using public detections
38.5
11.8
±18.5
33.25.1% 50.1% 17,07236,499641 (15.8)1,521 (37.5)1,156.6Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFP FNID Sw.FragHzDetector
RNN_LSTM
41. online method using public detections
40.6
19.0
±15.2
17.15.5% 45.6% 11,57836,7061,490 (37.0)2,081 (51.7)165.2Public
A. Milan, S. Rezatofighi, A. Dick, I. Reid, K. Schindler. Online Multi-Target Tracking using Recurrent Neural Networks. In AAAI, 2017.
oICF
42. online method using public detections
30.2
27.1
±14.9
40.56.4% 48.7% 7,59436,757454 (11.3)1,660 (41.3)1.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
TBD_DL
43. online method using public detections
39.8
11.2
±18.5
32.45.3% 50.2% 17,17136,759651 (16.2)1,480 (36.8)170.1Public
Anonymous submission
RMOT
44. online method using public detections
39.4
18.6
±17.5
32.65.3% 53.3% 12,47336,835684 (17.1)1,282 (32.0)7.9Public
J. Yoon, H. Yang, J. Lim, K. Yoon. Bayesian Multi-Object Tracking Using Motion Context from Multiple Objects. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
SCEA
45. online method using public detections
27.0
29.1
±12.2
37.28.9% 47.3% 6,06036,912604 (15.1)1,182 (29.6)6.8Public
J. Yoon, C. Lee, M. Yang, K. Yoon. Online Multi-object Tracking via Structural Constraint Event Aggregation. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
LP_SSVM
46. using public detections
28.5
25.2
±13.7
34.05.8% 53.0% 8,36936,932646 (16.2)849 (21.3)41.3Public
S. Wang, C. Fowlkes. Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions. In International Journal of Computer Vision, 2016.
HSA
47. online method using public detections
37.3
25.0
±14.4
29.75.0% 43.8% 7,64536,9361,504 (37.7)2,550 (63.9)2.7Public
Anonymous submission
ELP
48. using public detections
33.2
25.0
±10.8
26.27.5% 43.8% 7,34537,3441,396 (35.6)1,804 (46.0)5.7Public
N. McLaughlin, J. Martinez Del Rincon, P. Miller. Enhancing Linear Programming with Motion Modeling for Multi-target Tracking. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
AR_WLS
49. using public detections
30.3
24.9
±14.5
35.46.1% 52.4% 8,07137,543551 (14.2)1,297 (33.3)2.1Public
Anonymous submission
SiameseCNN
50. using public detections
27.9
29.0
±15.1
34.38.5% 48.4% 5,16037,798639 (16.6)1,316 (34.2)52.8Public
Laura Leal-Taixé, Cristian Canton-Ferrer, Konrad Schindler. Learning by Tracking: Siamese CNN for Robust Target Association. DeepVision Workshop (CVPR), Las Vegas (Nevada, USA), June 2016.
TrackerAvg RankMOTAIDF1MTMLFP FNID Sw.FragHzDetector
MTT
51. online method using public detections
34.9
25.0
±13.2
33.24.0% 53.0% 7,69137,833569 (14.8)1,218 (31.7)1.9Public
Anonymous submission
A_TKF
52. online method using public detections
28.0
24.0
±13.3
35.56.0% 50.5% 7,83938,174689 (18.2)1,365 (36.0)180.7Public
Anonymous submission
DCO_X
53. using public detections
36.4
19.6
±14.1
31.55.1% 54.9% 10,65238,232521 (13.8)819 (21.7)0.3Public
A. Milan, K. Schindler, S. Roth. Multi-Target Tracking by Discrete-Continuous Energy Minimization. In IEEE PAMI, 2016.
CppSORT
54. online method using public detections
36.8
21.7
±11.8
26.83.7% 49.1% 8,42238,4541,231 (32.9)2,005 (53.6)1,112.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
TC_ODAL
55. online method using public detections
49.0
15.1
±15.0
0.03.2% 55.8% 12,97038,538637 (17.1)1,716 (46.0)1.7Public
S. Bae, K. Yoon. Robust Online Multi-Object Tracking based on Tracklet Confidence and Online Discriminative Appearance Learning. In CVPR, 2014.
TENSOR
56. using public detections
36.9
24.3
±13.2
24.15.5% 46.6% 6,64438,5821,271 (34.2)1,304 (35.1)24.0Public
Anonymous submission
EAMTTpub
57. online method using public detections
34.9
22.3
±14.2
32.85.4% 52.7% 7,92438,982833 (22.8)1,485 (40.6)12.2Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
SegTrack
58. using public detections
39.2
22.5
±15.2
31.55.8% 63.9% 7,89039,020697 (19.1)737 (20.2)0.2Public
A. Milan, L. Leal-Taixé, K. Schindler, I. Reid. Joint Tracking and Segmentation of Multiple Targets. In CVPR, 2015.
OLTT
59. using public detections
39.8
21.0
±12.7
24.63.3% 54.4% 8,37639,368794 (22.1)1,199 (33.4)10.9Public
Anonymous submission
ALExTRAC
60. using public detections
43.2
17.0
±12.1
17.33.9% 52.4% 9,23339,9331,859 (53.1)1,872 (53.5)3.7Public
A. Bewley, L. Ott, F. Ramos, B. Upcroft. ALExTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains. In International Conference on Robotics and Automation (ICRA), (to appear) 2016.
TrackerAvg RankMOTAIDF1MTMLFP FNID Sw.FragHzDetector
JPDA_m
61. using public detections
28.3
23.8
±15.1
33.85.0% 58.1% 6,37340,084365 (10.5)869 (25.0)32.6Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
MVM
62. online method using public detections
38.4
25.0
±11.3
26.53.2% 48.7% 4,66640,1181,302 (37.5)2,084 (60.1)13.8Public
Anonymous submission
LINF1
63. using public detections
28.0
24.5
±15.4
34.85.5% 64.6% 5,86440,207298 (8.6)744 (21.5)7.5Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
SMOT
64. using public detections
49.8
18.2
±10.3
0.02.8% 54.8% 8,78040,3101,148 (33.4)2,132 (62.0)2.7Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
TO
65. using public detections
32.3
25.7
±13.5
32.74.3% 57.4% 4,77940,511383 (11.2)600 (17.6)5.0Public
S. Manen, R. Timofte, D. Dai, L. Gool. Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016.
MPM
66. online method using public detections
39.4
24.8
±10.9
25.42.9% 50.2% 4,06140,8461,319 (39.4)2,017 (60.2)8.6Public
Anonymous submission
RMM
67. using public detections
44.7
20.5
±12.6
20.63.3% 47.4% 5,78441,1081,939 (58.6)2,336 (70.6)3.3Public
Anonymous submission
GMPHD
68. online method using public detections
35.6
18.5
±12.7
28.43.9% 55.3% 7,86441,766459 (14.3)1,266 (39.5)19.8Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
TFMOT
69. online method using public detections
32.9
23.8
±11.9
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)11.3Public
Joint Cost Minimization for Multi-Object Tracking
JCM_MOT
70. online method using public detections
30.2
23.8
±12.0
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)11.3Public
Joint Cost Minimization for Multi-Object Tracking
TrackerAvg RankMOTAIDF1MTMLFP FNID Sw.FragHzDetector
GSCR
71. online method using public detections
35.7
15.8
±10.5
27.91.8% 61.0% 7,59743,633514 (17.7)1,010 (34.8)28.1Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Online multi-person tracking based on global sparse collaborative representations. In ICIP, 2015.
cuMOT
72. online method using public detections
42.4
6.8
±13.7
22.41.1% 59.4% 12,29844,142811 (28.8)1,306 (46.4)28.9Public
Anonymous submission

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
11578372161440

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

TUD-Crossing

TUD-Crossing

(61.7% MOTA)

PETS09-S2L2

PETS09-S2L2

(41.9% MOTA)

ETH-Jelmoli

ETH-Jelmoli

(37.5% MOTA)

...

...

Venice-1

Venice-1

(19.2% MOTA)

ADL-Rundle-1

ADL-Rundle-1

(14.6% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.