2D MOT 2015 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!


Benchmark Statistics

TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
HOHOTRACK
1. using public detections
26.8
±0.0
32.928.6% 16.9% 18,99424,5491,411 (23.5)3,417 (56.9)Public
Anonymous submission
MR
2. using public detections
36.6
±0.0
47.233.1% 21.5% 16,69621,428850 (13.1)1,156 (17.8)Public
Anonymous submission
TSDA_OAL
3. online method using public detections
18.6
±0.0
36.19.4% 42.3% 16,35032,853806 (17.3)1,544 (33.2)Public
H. Ko. Online multi-person tracking with two-stage data association and online appearance model learning. In IET Computer Vision, 2017.
SMOTe
4. online method using public detections
28.0
±0.0
45.415.0% 30.8% 15,88127,372977 (17.6)2,106 (38.0)Public
Anonymous submission
MTSTracker
5. online method using public detections
20.6
±0.0
31.99.0% 36.9% 15,16132,2121,387 (29.2)2,357 (49.5)Public
F. Nguyen Thi Lan Anh, F. Bremond. Multi-Object Tracking using Multi-Channel Part Appearance Representation. In International conference on Advanced video and Signal Based Surveillance, 2017.
TBD
6. using public detections
15.9
±0.0
0.06.4% 47.9% 14,94334,7771,939 (44.7)1,963 (45.2)Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
LDCT
7. online method using public detections
4.7
±0.0
16.811.4% 32.5% 14,06632,15612,348 (259.1)2,918 (61.2)Public
F. Solera, S. Calderara, R. Cucchiara. Learning to Divide and Conquer for Online Multi-Target Tracking. In ICCV, 2015
OMT_DFH
8. using public detections
21.2
±0.0
37.37.1% 46.5% 13,21834,657563 (12.9)1,255 (28.8)Public
J. Ju, D. Kim, B. Ku, D. Han, H. Ko. Online multi-object tracking with efficient track drift and fragmentation handling. In J. Opt. Soc. Am. A, 2017.
DP_NMS
9. using public detections
14.5
±0.0
19.76.0% 40.8% 13,17134,8144,537 (104.7)3,090 (71.3)Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
MHTREID15
10. online method using public detections
40.0
±0.0
49.429.7% 24.4% 12,78023,378684 (11.0)1,112 (17.9)Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
RMOT
11. using public detections
18.6
±0.0
32.65.3% 53.3% 12,47336,835684 (17.1)1,282 (32.0)Public
J. Yoon, H. Yang, J. Lim, K. Yoon. Bayesian Multi-Object Tracking Using Motion Context from Multiple Objects. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
EDA_GNN
12. using public detections
21.8
±0.0
27.89.0% 40.2% 11,97034,5871,488 (34.0)1,851 (42.4)Public
Paper ID 2713
RSCNN
13. online method using public detections
29.5
±0.0
37.012.9% 36.3% 11,86630,474976 (19.4)1,176 (23.3)Public
Heba Mahgoub, Khaled Mostafa, Khaled T. Wassif and Ibrahim Farag, “Multi-Target Tracking Using Hierarchical Convolutional Features and Motion Cues” International Journal of Advanced Computer Science and Applications(IJACSA), 8(11), 2017.
LP2D
14. online method using public detections
19.8
±0.0
0.06.7% 41.2% 11,58036,0451,649 (39.9)1,712 (41.4)Public
MOT baseline: Linear programming on 2D image coordinates.
RNN_LSTM
15.
19.0
±0.0
17.15.5% 45.6% 11,57836,7061,490 (37.0)2,081 (51.7)Public
A. Milan, S. Rezatofighi, A. Dick, I. Reid, K. Schindler. Online Multi-Target Tracking using Recurrent Neural Networks. In AAAI, 2017.
ISE_MOT15R
16.
46.7
±0.0
51.629.4% 25.7% 11,00320,839878 (13.3)1,265 (19.1)Public
MIFT
CRF_RNN15
17. using public detections
38.9
±0.0
49.320.9% 29.4% 10,66926,291591 (10.3)1,270 (22.2)Public
Anonymous submission
DCO_X
18. using public detections
19.6
±0.0
31.55.1% 54.9% 10,65238,232521 (13.8)819 (21.7)Public
A. Milan, K. Schindler, S. Roth. Multi-Target Tracking by Discrete-Continuous Energy Minimization. In IEEE PAMI, 2016.
JointMC
19. using public detections
35.6
±0.0
45.123.2% 39.3% 10,58028,508457 (8.5)969 (18.1)Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
MMHT15
20. online method using public detections
29.8
±0.0
38.012.1% 38.0% 10,54831,3901,189 (24.3)1,612 (33.0)Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
MotiCon
21.
23.1
±0.0
29.44.7% 52.0% 10,40435,8441,018 (24.4)1,061 (25.5)Public
L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, S. Savarese. Learning an image-based motion context for multiple people tracking. In CVPR, 2014.
RKCF
22. online method using public detections
16.8
±0.0
29.05.5% 50.1% 10,33639,805980 (27.8)1,750 (49.7)Public
Anonymous submission
DPT
23. using public detections
16.1
±0.0
27.55.0% 50.3% 10,33040,1541,076 (31.1)1,794 (51.8)Public
CRFTrack_
24. online method
40.0
±0.0
49.623.0% 28.6% 10,29525,917658 (11.4)1,508 (26.1)Public
Anonymous submission
SRPN
25. online method
31.0
±0.0
30.712.6% 41.7% 10,24131,0991,062 (21.5)1,370 (27.7)Public
Anonymous submission
PoMOT
26. using public detections
16.7
±0.0
28.85.0% 50.3% 10,18540,025968 (27.8)1,748 (50.2)Public
Anonymous submission
TDAM
27. online method using public detections
33.0
±0.0
46.113.3% 39.1% 10,06430,617464 (9.2)1,506 (30.0)Public
M. Yang, Y. Jia. Temporal dynamic appearance modeling for online multi-person tracking. In Computer Vision and Image Understanding, 2016.
FFT15
28. using public detections
46.3
±0.0
48.829.1% 23.2% 9,87021,9131,232 (19.1)1,638 (25.5)Public
Anonymous submission
INARLA
29.
34.7
±0.0
42.112.5% 30.0% 9,85529,1581,112 (21.2)2,848 (54.2)Public
H. Wu, Y. Hu, K. Wang, H. Li, L. Nie, H. Cheng. Instance-aware representation learning and association for online multi-person tracking. In Pattern Recognition, 2019.
MDP
30. using public detections
30.3
±0.0
44.713.0% 38.4% 9,71732,422680 (14.4)1,500 (31.8)Public
Y. Xiang, A. Alahi, S. Savarese. Learning to Track: Online Multi-Object Tracking by Decision Making. In International Conference on Computer Vision (ICCV), 2015.
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
MPNTrack15
31.
48.3
±0.0
56.532.2% 24.3% 9,64021,629504 (7.8)1,074 (16.6)Public
Anonymous submission
TC_ODAL
32. online method using public detections
48.3
±0.0
56.532.2% 24.3% 9,64021,629504 (7.8)1,074 (16.6)Public
S. Bae, K. Yoon. Robust Online Multi-Object Tracking based on Tracklet Confidence and Online Discriminative Appearance Learning. In CVPR, 2014.
CEM
33. online method
48.3
±0.0
56.532.2% 24.3% 9,64021,629504 (7.8)1,074 (16.6)Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
TLO15
34. online method using public detections
40.0
±0.0
44.317.1% 28.8% 9,34926,3281,207 (21.1)1,624 (28.4)Public
Anonymous submission
ALExTRAC
35. using public detections
17.0
±0.0
17.33.9% 52.4% 9,23339,9331,859 (53.1)1,872 (53.5)Public
A. Bewley, L. Ott, F. Ramos, B. Upcroft. ALExTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains. In International Conference on Robotics and Automation (ICRA), (to appear) 2016.
MHT_DAM
36. online method using public detections
32.4
±0.0
45.316.0% 43.8% 9,06432,060435 (9.1)826 (17.3)Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
KCF_Simple
37. using public detections
18.3
±0.0
25.12.6% 49.8% 8,97639,8051,436 (40.8)2,634 (74.8)Public
Anonymous submission
SNM
38. online method using public detections
31.3
±0.0
38.212.6% 35.4% 8,90332,393926 (19.6)2,382 (50.4)Public
Anonymous submission
MCF_PHD
39. using public detections
29.9
±0.0
38.211.9% 44.0% 8,89233,529656 (14.4)989 (21.8)Public
N. Wojke, D. Paulus. Global data association for the Probability Hypothesis Density filter using network flows. In 2016 IEEE International Conference on Robotics and Automation, ICRA, 2016.
CF_MCMC
40. online method using public detections
31.4
±0.0
36.410.3% 40.9% 8,79832,541814 (17.3)1,711 (36.4)Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
SMOT
41. online method
18.2
±0.0
0.02.8% 54.8% 8,78040,3101,148 (33.4)2,132 (62.0)Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
MHT__ReID
42. online method using public detections
33.0
±0.0
46.417.6% 42.6% 8,72532,046421 (8.8)851 (17.8)Public
Anonymous submission
HybridDAT
43. online method using public detections
35.0
±0.0
47.711.4% 42.2% 8,45531,140358 (7.3)1,267 (25.7)Public
M. Yang, Y. Jia. A Hybrid Data Association Framework for Robust Online Multi-Object Tracking. In IEEE Transactions on Image Processing, 2016.
CppSORT
44. using public detections
21.7
±0.0
26.83.7% 49.1% 8,42238,4541,231 (32.9)2,005 (53.6)Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
DAC_min
45. online method using public detections
28.3
±0.0
38.39.8% 45.5% 8,39635,122543 (12.7)1,162 (27.1)Public
LP_SSVM
46. online method
25.2
±0.0
34.05.8% 53.0% 8,36936,932646 (16.2)849 (21.3)Public
S. Wang, C. Fowlkes. Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions. In International Journal of Computer Vision, 2016.
TLO
47. online method using public detections
41.3
±0.0
46.115.7% 34.5% 8,00027,210852 (15.3)1,405 (25.2)Public
Anonymous submission
TBX
48. using public detections
27.5
±0.0
33.810.4% 45.8% 7,96835,810759 (18.2)1,528 (36.6)Public
R. Henschel, L. Leal-Taixé, B. Rosenhahn, K. Schindler. Tracking with multi-level features. In arXiv:1607.07304, 2016.
AMIR15
49. using public detections
37.6
±0.0
46.015.8% 26.8% 7,93329,3971,026 (19.7)2,024 (38.8)Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
EAMTTpub
50.
22.3
±0.0
32.85.4% 52.7% 7,92438,982833 (22.8)1,485 (40.6)Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
QuadMOT
51.
33.8
±0.0
40.412.9% 36.9% 7,89832,061703 (14.7)1,430 (29.9)Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
SegTrack
52. online method using public detections
22.5
±0.0
31.55.8% 63.9% 7,89039,020697 (19.1)737 (20.2)Public
A. Milan, L. Leal-Taixé, K. Schindler, I. Reid. Joint Tracking and Segmentation of Multiple Targets. In CVPR, 2015.
TSMLCDEnew
53. using public detections
34.3
±0.0
44.114.0% 39.4% 7,86931,908618 (12.9)959 (20.0)Public
B. Wang, G. Wang, K. L. Chan, L. Wang. Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation. In arXiv:1511.06654, 2015.
GMPHD
54. using public detections
18.5
±0.0
28.43.9% 55.3% 7,86441,766459 (14.3)1,266 (39.5)Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
GMMA_intp
55. online method
27.3
±0.0
36.66.5% 43.1% 7,84835,817987 (23.7)1,848 (44.3)Public
Y. Song, Y. Yoon, K. Yoon, M. Jeon. Online and Real-Time Tracking with the GMPHD Filter using Group Management and Relative Motion Analysis. In Proc. IEEE Int. Workshop Traffic Street Surveill. Safety Secur. (AVSS), 2018.
dSRPN15
56. online method
33.3
±0.0
32.79.3% 43.7% 7,82532,211919 (19.3)1,276 (26.8)Public
Anonymous submission
CNNTCM
57.
29.6
±0.0
36.811.2% 44.0% 7,78634,733712 (16.4)943 (21.7)Public
B. Wang, K. L. Chan, L. Wang, B. Shuai, Z. Zuo, T. Liu, G. Wang. Joint Learning of Convolutional Neural Networks and Temporally Constrained Metrics for Tracklet Association. In DeepVision Workshop (CVPR), 2016.
NOMT
58.
33.7
±0.0
44.612.2% 44.0% 7,76232,547442 (9.4)823 (17.5)Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
DSA_MOT
59.
29.4
±0.0
41.29.2% 50.2% 7,70535,364329 (7.8)789 (18.6)Public
Anonymous submission
UN_DAM
60. online method using public detections
29.7
±0.0
41.49.2% 49.9% 7,61035,269318 (7.5)674 (15.8)Public
Multi Object Tracking using Deep Structural Cost Minimization in Data Association
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
GSCR
61. online method
15.8
±0.0
27.91.8% 61.0% 7,59743,633514 (17.7)1,010 (34.8)Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Online multi-person tracking based on global sparse collaborative representations. In ICIP, 2015.
oICF
62.
27.1
±0.0
40.56.4% 48.7% 7,59436,757454 (11.3)1,660 (41.3)Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
HAM_INTP15
63. online method
28.6
±0.0
41.410.0% 44.0% 7,48535,910460 (11.1)1,038 (25.0)Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
DEEPDA_MOT
64. using public detections
22.5
±0.0
25.96.4% 62.0% 7,34639,0921,159 (31.9)1,538 (42.3)Public
K. Yoon, D. Kim, Y. Yoon, M. Jeon. Data Association for Multi-Object Tracking via Deep Neural Networks. In Sensors, 2019.
ELP
65.
25.0
±0.0
26.27.5% 43.8% 7,34537,3441,396 (35.6)1,804 (46.0)Public
N. McLaughlin, J. Martinez Del Rincon, P. Miller. Enhancing Linear Programming with Motion Modeling for Multi-target Tracking. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
HAM_SADF
66. using public detections
25.2
±0.0
37.85.7% 58.3% 7,33038,275357 (9.5)745 (19.8)Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
KCF
67. using public detections
38.9
±0.0
44.516.6% 31.5% 7,32129,501720 (13.9)1,440 (27.7)Public
P. Chu, H. Fan, C. Tan, H. Ling. Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment. In WACV, 2019.
Goturn15
68. online method using public detections
23.9
±0.0
22.33.6% 66.4% 7,02138,750965 (26.1)1,237 (33.5)Public
Anonymous submission
Lif_T
69. online method using public detections
52.5
±0.0
60.033.8% 25.8% 6,83721,610730 (11.3)1,047 (16.2)Public
Anonymous submission
RAR15pub
70. using public detections
35.1
±0.0
45.413.0% 42.3% 6,77132,717381 (8.1)1,523 (32.6)Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
TENSOR
71. using public detections
24.3
±0.0
24.15.5% 46.6% 6,64438,5821,271 (34.2)1,304 (35.1)Public
X. Shi, H. Ling, Y. Pang, W. Hu, P. Chu, J. Xing. Rank-1 Tensor Approximation for High-Order Association in Multi-target Tracking. In IJCV, 2019.
SLTV15
72. using public detections
27.6
±0.0
40.37.2% 51.9% 6,58137,566358 (9.2)884 (22.7)Public
Gwangju Institute of Science and Technology(GIST), Machine Learning and Vision Laboratory
PHD_GSDL
73. using public detections
30.5
±0.0
38.87.6% 41.2% 6,53435,284879 (20.6)2,208 (51.9)Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
GMPHD_OGM
74.
30.7
±0.0
38.811.5% 38.1% 6,50235,0301,034 (24.1)1,351 (31.4)Public
Y. Song, K. Yoon, Y. Yoon, K. Yow, M. Jeon. Online Multi-Object Tracking with GMPHD Filter and Occlusion Group Management. In IEEE Access, 2019.
Tracktor15
75. using public detections
44.1
±0.0
46.718.0% 26.2% 6,47726,5771,318 (23.2)1,790 (31.5)Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
HSJ_Sia
76. online method using public detections
20.9
±0.0
29.24.0% 51.6% 6,45740,4771,695 (49.7)2,734 (80.1)Public
Anonymous submission
JPDA_m
77. online method using public detections
23.8
±0.0
33.85.0% 58.1% 6,37340,084365 (10.5)869 (25.0)Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
DeepMP
78. online method
40.5
±0.0
28.816.8% 35.2% 6,27929,654599 (11.6)1,034 (20.0)Public
Anonymous submission
SORT_Y
79. using public detections
45.9
±0.0
47.220.5% 27.0% 6,24725,6691,346 (23.1)1,436 (24.7)Public
Anonymous submission
AdTobKF
80. using public detections
24.8
±0.0
34.54.0% 52.0% 6,20139,321666 (18.5)1,300 (36.1)Public
K. Loumponias, A. Dimou, N. Vretos, P. Daras. Adaptive Tobit Kalman-Based Tracking. In 2018 14th International Conference on Signal-Image Technology \& Internet-Based Systems (SITIS), 2018.
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
TC_SIAMESE
81. using public detections
20.2
±0.0
32.62.6% 67.5% 6,12742,596294 (9.6)825 (26.9)Public
Y. Yoon, Y. Song, K. Yoon, M. Jeon. Online Multiple-Object Tracking using Selective Deep Appearance Matching. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2018.
TBSS15
82. using public detections
29.2
±0.0
37.26.8% 43.8% 6,06836,779649 (16.2)1,508 (37.6)Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
SCEA
83.
29.1
±0.0
37.28.9% 47.3% 6,06036,912604 (15.1)1,182 (29.6)Public
J. Yoon, C. Lee, M. Yang, K. Yoon. Online Multi-object Tracking via Structural Constraint Event Aggregation. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
LFNF
84. online method
31.6
±0.0
33.19.6% 41.7% 5,94335,095961 (22.4)1,106 (25.8)Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
DCCRF
85. online method using public detections
33.6
±0.0
39.110.4% 37.6% 5,91734,002866 (19.4)1,566 (35.1)Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
LINF1
86. online method using public detections
24.5
±0.0
34.85.5% 64.6% 5,86440,207298 (8.6)744 (21.5)Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
FP_H
87.
23.4
±0.0
33.73.7% 55.9% 5,78240,719538 (16.0)1,875 (55.6)Public
Anonymous submission
BiGRU1
88. using public detections
26.1
±0.0
32.26.5% 48.8% 5,76138,948719 (19.6)2,046 (55.9)Public
Anonymous submission
mLK
89. online method
35.1
±0.0
47.512.3% 38.3% 5,67833,815383 (8.5)1,175 (26.1)Public
Yuan Zhang, Di Xie and Shiliang Pu (Hikvision Research Institute)
DCOR
90. online method using public detections
22.4
±0.0
24.73.3% 57.4% 5,60341,410634 (19.4)1,686 (51.7)Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragDetector
SAS_MOT15
91. using public detections
22.2
±0.0
27.23.1% 61.6% 5,59141,531700 (21.6)1,240 (38.3)Public
A. Maksai, P. Fua. Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking. In CVPR, 2019.
STRN
92. online method using public detections
38.1
±0.0
46.611.5% 33.4% 5,45131,5711,033 (21.2)2,665 (54.8)Public
J. Xu, Y. Cao, Z. Zhang, H. Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. In ICCV, 2019.
SiameseCNN
93. online method
29.0
±0.0
34.38.5% 48.4% 5,16037,798639 (16.6)1,316 (34.2)Public
Laura Leal-Taixé, Cristian Canton-Ferrer, Konrad Schindler. Learning by Tracking: Siamese CNN for Robust Target Association. DeepVision Workshop (CVPR), Las Vegas (Nevada, USA), June 2016.
AM
94. online method using public detections
34.3
±0.0
48.311.4% 43.4% 5,15434,848348 (8.0)1,463 (33.8)Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
siam
95. online method using public detections
33.0
±0.0
36.28.9% 43.3% 5,10135,190853 (20.0)1,078 (25.2)Public
Anonymous submission
CDA_DDALpb
96. using public detections
32.8
±0.0
38.89.7% 42.2% 4,98335,690614 (14.7)1,583 (37.8)Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
TO
97. online method using public detections
25.7
±0.0
32.74.3% 57.4% 4,77940,511383 (11.2)600 (17.6)Public
S. Manen, R. Timofte, D. Dai, L. Gool. Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016.
TFMOT
98. online method using public detections
23.8
±0.0
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
AP_HWDPL_p
99. using public detections
38.5
±0.0
47.18.7% 37.4% 4,00533,203586 (12.8)1,263 (27.5)Public
C. Long, A. Haizhou, S. Chong, Z. Zijie, B. Bo. Online Multi-Object Tracking with Convolutional Neural Networks. In 2017 IEEE International Conference on Image Processing (ICIP), 2017.
JPDA_OP
100. online method
3.6
±0.0
7.50.4% 96.1% 1,02458,18929 (5.5)119 (22.5)Public
Anonymous submission
SequencesFramesTrajectoriesBoxes
11578372161440

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

TUD-Crossing

TUD-Crossing

(0.0% MOTA)

PETS09-S2L2

PETS09-S2L2

(0.0% MOTA)

ETH-Jelmoli

ETH-Jelmoli

(0.0% MOTA)

...

...

KITTI-19

KITTI-19

(0.0% MOTA)

Venice-1

Venice-1

(0.0% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.