2D MOT 2015 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
AMIR15
1. online method using public detections
21.2
37.6
±12.5
46.015.8% 26.8% 7,93329,3971,026 (19.7)2,024 (38.8)1.9Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
Dr_lzy
2. using public detections
38.3
-15.8
±21.6
24.116.6% 28.7% 38,04528,0295,079 (93.4)2,719 (50.0)9.6Public
Anonymous submission
Stitiching
3. using public detections
43.0
-4.6
±24.9
31.116.1% 28.8% 31,83528,9393,512 (66.4)2,840 (53.7)4.8Public
Anonymous submission
LDCT
4. online method using public detections
41.8
4.7
±41.3
16.811.4% 32.5% 14,06632,15612,348 (259.1)2,918 (61.2)20.7Public
F. Solera, S. Calderara, R. Cucchiara. Learning to Divide and Conquer for Online Multi-Target Tracking. In ICCV, 2015
RAM
5. using public detections
41.2
18.8
±12.4
31.112.6% 33.8% 14,38431,6953,814 (78.8)2,458 (50.8)8.2Public
Anonymous submission
Otakudj
6. online method using public detections
35.3
29.5
±14.2
43.011.8% 34.3% 9,43332,0671,798 (37.6)2,431 (50.8)0.6Public
Anonymous submission
MAR
7. using public detections
33.7
29.6
±11.6
42.811.7% 34.3% 9,36432,1311,783 (37.4)2,439 (51.1)1.2Public
Anonymous submission
cf_mdp
8. online method using public detections
23.8
31.4
±14.7
43.716.1% 34.3% 10,11831,284718 (14.6)1,469 (29.9)1.4Public
Anonymous submission
Q_cf
9. online method using public detections new
23.1
31.4
±13.1
43.716.1% 34.3% 10,11831,284718 (14.6)1,469 (29.9)450.4Public
Anonymous submission
MCFCOS_CNN
10. online method using public detections
41.3
25.5
±20.8
32.09.3% 34.4% 12,34431,3782,064 (42.2)2,618 (53.5)0.5Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
AMT
11. online method using public detections new
20.8
30.4
±13.6
43.915.0% 35.6% 10,39131,641725 (14.9)1,641 (33.8)296.0Public
Anonymous submission
RSCNN
12. using public detections
30.0
29.5
±23.9
37.012.9% 36.3% 11,86630,474976 (19.4)1,176 (23.3)4.0Public
Heba Mahgoub, Khaled Mostafa, Khaled T. Wassif and Ibrahim Farag, “Multi-Target Tracking Using Hierarchical Convolutional Features and Motion Cues” International Journal of Advanced Computer Science and Applications(IJACSA), 8(11), 2017.
ARM
13. using public detections
30.4
29.0
±12.8
40.610.0% 36.3% 7,86633,8211,948 (43.3)2,711 (60.3)9.6Public
Anonymous submission
QuadMOT
14. using public detections
25.9
33.8
±14.8
40.412.9% 36.9% 7,89832,061703 (14.7)1,430 (29.9)3.7Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
MTSTracker
15. online method using public detections
40.5
20.6
±18.2
31.99.0% 36.9% 15,16132,2121,387 (29.2)2,357 (49.5)19.3Public
F. Nguyen Thi Lan Anh, F. Bremond. Multi-Object Tracking using Multi-Channel Part Appearance Representation. In International conference on Advanced video and Signal Based Surveillance, 2017.
APRCNN_Pub
16. online method using public detections
16.6
38.5
±9.9
47.18.7% 37.4% 4,00533,203586 (12.8)1,263 (27.5)6.7Public
C. Long, A. Haizhou, S. Chong, Z. Zijie, B. Bo. Online Multi-Object Tracking with Convolutional Neural Networks. In 2017 IEEE International Conference on Image Processing (ICIP), 2017.
DCCRF
17. online method using public detections
28.5
33.6
±11.0
39.110.4% 37.6% 5,91734,002866 (19.4)1,566 (35.1)0.1Public
Anonymous submission
mLK
18. online method using public detections
19.4
35.1
±12.9
47.512.3% 38.3% 5,67833,815383 (8.5)1,175 (26.1)1.0Public
Yuan Zhang, Di Xie and Shiliang Pu (Hikvision Research Institute)
MDP
19. online method using public detections
28.8
30.3
±14.6
44.713.0% 38.4% 9,71732,422680 (14.4)1,500 (31.8)1.1Public
Y. Xiang, A. Alahi, S. Savarese. Learning to Track: Online Multi-Object Tracking by Decision Making. In International Conference on Computer Vision (ICCV), 2015.
TDAM
20. online method using public detections
25.3
33.0
±9.8
46.113.3% 39.1% 10,06430,617464 (9.2)1,506 (30.0)5.9Public
M. Yang, Y. Jia. Temporal dynamic appearance modeling for online multi-person tracking. In Computer Vision and Image Understanding, 2016.
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
JointMC
21. using public detections
19.7
35.6
±18.9
45.123.2% 39.3% 10,58028,508457 (8.5)969 (18.1)0.6Public
M. Keuper, S. Tang, Z. Yu, B. Andres, T. Brox, B. Schiele. A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects. In CoRR, 2016.
TSMLCDEnew
22. using public detections
22.8
34.3
±13.1
44.114.0% 39.4% 7,86931,908618 (12.9)959 (20.0)6.5Public
B. Wang, G. Wang, K. L. Chan, L. Wang. Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation. In arXiv:1511.06654, 2015.
DP_NMS
23. using public detections
43.8
14.5
±14.5
19.76.0% 40.8% 13,17134,8144,537 (104.7)3,090 (71.3)444.8Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
CF_MCMC
24. using public detections
30.4
31.4
±11.3
36.410.3% 40.9% 8,79832,541814 (17.3)1,711 (36.4)3.2Public
Anonymous submission
LP2D
25. using public detections
42.6
19.8
±14.2
0.06.7% 41.2% 11,58036,0451,649 (39.9)1,712 (41.4)112.1Public
MOT baseline: Linear programming on 2D image coordinates.
PHD_GSDL
26. online method using public detections
33.6
30.5
±14.9
38.87.6% 41.2% 6,53435,284879 (20.6)2,208 (51.9)8.2Public
Anonymous submission
LFNF
27. using public detections
29.3
31.6
±12.3
33.19.6% 41.7% 5,94335,095961 (22.4)1,106 (25.8)4.0Public
Anonymous submission
MOTBKCF
28. online method using public detections
24.9
32.4
±15.3
44.614.1% 42.0% 8,91232,112501 (10.5)1,058 (22.2)0.2Public
Anonymous submission
HybridDAT
29. online method using public detections
19.0
35.0
±15.0
47.711.4% 42.2% 8,45531,140358 (7.3)1,267 (25.7)4.6Public
M. Yang, Y. Jia. A Hybrid Data Association Framework for Robust Online Multi-Object Tracking. In IEEE Transactions on Image Processing, 2016.
CDA_DDALpb
30. online method using public detections
25.8
32.8
±10.6
38.89.7% 42.2% 4,98335,690614 (14.7)1,583 (37.8)2.3Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking, In IEEE TPAMI, 2017.
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
TSDA_OAL
31. online method using public detections
40.8
18.6
±17.6
36.19.4% 42.3% 16,35032,853806 (17.3)1,544 (33.2)19.7Public
H. Ko. Online multi-person tracking with two-stage data association and online appearance model learning. In IET Computer Vision, 2017.
RAR15pub
32. online method using public detections
22.8
35.1
±12.5
45.413.0% 42.3% 6,77132,717381 (8.1)1,523 (32.6)5.4Public
Anonymous ICCV submission
AM
33. online method using public detections
20.1
34.3
±13.7
48.311.4% 43.4% 5,15434,848348 (8.0)1,463 (33.8)0.5Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism. In arXiv preprint arXiv:1708.02843, 2017.
JAM
34. online method using public detections
27.1
32.0
±14.6
39.210.3% 43.6% 5,71435,473562 (13.3)1,217 (28.8)0.0Public
Anonymous submission
ELP
35. using public detections
39.4
25.0
±10.8
26.27.5% 43.8% 7,34537,3441,396 (35.6)1,804 (46.0)5.7Public
N. McLaughlin, J. Martinez Del Rincon, P. Miller. Enhancing Linear Programming with Motion Modeling for Multi-target Tracking. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
MHT_DAM
36. using public detections
22.8
32.4
±15.6
45.316.0% 43.8% 9,06432,060435 (9.1)826 (17.3)0.7Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
HSA
37. online method using public detections
43.8
25.0
±14.4
29.75.0% 43.8% 7,64536,9361,504 (37.7)2,550 (63.9)2.7Public
Anonymous submission
TBSS15
38. online method using public detections
33.7
29.2
±12.5
37.26.8% 43.8% 6,06836,779649 (16.2)1,508 (37.6)11.5Public
Anonymous submission
NOMT
39. using public detections
19.8
33.7
±16.2
44.612.2% 44.0% 7,76232,547442 (9.4)823 (17.5)11.5Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
CNNTCM
40. using public detections
27.6
29.6
±13.9
36.811.2% 44.0% 7,78634,733712 (16.4)943 (21.7)1.7Public
B. Wang, K. L. Chan, L. Wang, B. Shuai, Z. Zuo, T. Liu, G. Wang. Joint Learning of Convolutional Neural Networks and Temporally Constrained Metrics for Tracklet Association. In DeepVision Workshop (CVPR), 2016.
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
MCF_PHD
41. using public detections
26.4
29.9
±20.0
38.211.9% 44.0% 8,89233,529656 (14.4)989 (21.8)12.2Public
N. Wojke, D. Paulus. Global data association for the Probability Hypothesis Density filter using network flows. In 2016 IEEE International Conference on Robotics and Automation, ICRA, 2016.
GMC
42. online method using public detections
27.9
25.0
±13.8
38.810.5% 44.4% 12,04633,441599 (13.1)1,246 (27.3)28.9Public
Anonymous submission
SSM_DPM
43. online method using public detections
35.9
15.1
±20.5
37.211.4% 44.5% 18,31933,193621 (13.5)1,229 (26.7)28.9Public
Anonymous submission
RMM
44. using public detections
42.3
26.6
±12.3
31.25.1% 44.8% 6,70837,2811,088 (27.7)1,957 (49.8)9.4Public
Anonymous submission
HAF
45. using public detections
20.3
33.0
±17.8
47.416.4% 44.9% 9,59331,204376 (7.6)804 (16.3)0.6Public
Anonymous submission
RNN_LSTM
46. online method using public detections
47.6
19.0
±15.2
17.15.5% 45.6% 11,57836,7061,490 (37.0)2,081 (51.7)165.2Public
A. Milan, S. Rezatofighi, A. Dick, I. Reid, K. Schindler. Online Multi-Target Tracking using Recurrent Neural Networks. In AAAI, 2017.
EAGS
47. using public detections
13.7
34.2
±15.2
47.516.4% 45.6% 8,73531,304372 (7.6)865 (17.6)192.8Public
#PR-D-17-01373# Enhancing Association Graph with Super-voxel for Multi-target Tracking
TBX
48. using public detections
41.8
27.5
±13.3
33.810.4% 45.8% 7,96835,810759 (18.2)1,528 (36.6)0.1Public
R. Henschel, L. Leal-Taixé, B. Rosenhahn, K. Schindler. Tracking with multi-level features. In arXiv:1607.07304, 2016.
CEM
49. using public detections
41.3
19.3
±17.5
0.08.5% 46.5% 14,18034,591813 (18.6)1,023 (23.4)1.1Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
OMT_DFH
50. online method using public detections
35.0
21.2
±17.2
37.37.1% 46.5% 13,21834,657563 (12.9)1,255 (28.8)28.6Public
J. Ju, D. Kim, B. Ku, D. Han, H. Ko. Online multi-object tracking with efficient track drift and fragmentation handling. In J. Opt. Soc. Am. A, 2017.
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
TENSOR
51. using public detections
43.5
24.3
±13.2
24.15.5% 46.6% 6,64438,5821,271 (34.2)1,304 (35.1)24.0Public
Anonymous submission
SCEA
52. online method using public detections
32.0
29.1
±12.2
37.28.9% 47.3% 6,06036,912604 (15.1)1,182 (29.6)6.8Public
J. Yoon, C. Lee, M. Yang, K. Yoon. Online Multi-object Tracking via Structural Constraint Event Aggregation. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
TBD
53. using public detections
54.8
15.9
±17.6
0.06.4% 47.9% 14,94334,7771,939 (44.7)1,963 (45.2)0.7Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
SiameseCNN
54. using public detections
32.9
29.0
±15.1
34.38.5% 48.4% 5,16037,798639 (16.6)1,316 (34.2)52.8Public
Laura Leal-Taixé, Cristian Canton-Ferrer, Konrad Schindler. Learning by Tracking: Siamese CNN for Robust Target Association. DeepVision Workshop (CVPR), Las Vegas (Nevada, USA), June 2016.
oICF
55. online method using public detections
35.4
27.1
±14.9
40.56.4% 48.7% 7,59436,757454 (11.3)1,660 (41.3)1.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
MVM
56. online method using public detections
44.9
25.0
±11.3
26.53.2% 48.7% 4,66640,1181,302 (37.5)2,084 (60.1)13.8Public
Anonymous submission
CppSORT
57. online method using public detections
42.9
21.7
±11.8
26.83.7% 49.1% 8,42238,4541,231 (32.9)2,005 (53.6)1,112.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
STKSVD
58. online method using public detections
44.3
11.8
±18.5
33.25.1% 50.1% 17,07236,499641 (15.8)1,521 (37.5)1,156.6Public
Anonymous submission
MPM
59. online method using public detections
46.3
24.8
±10.9
25.42.9% 50.2% 4,06140,8461,319 (39.4)2,017 (60.2)8.6Public
Anonymous submission
TBD_DL
60. online method using public detections
45.8
11.2
±18.5
32.45.3% 50.2% 17,17136,759651 (16.2)1,480 (36.8)170.1Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
2D_SPL
61. online method using public detections
37.3
25.2
±14.6
35.85.1% 50.3% 8,03737,190706 (17.9)1,278 (32.4)0.8Public
Anonymous submission
A_TKF
62. online method using public detections
33.3
24.0
±13.3
35.56.0% 50.5% 7,83938,174689 (18.2)1,365 (36.0)180.7Public
Anonymous submission
MotiCon
63. using public detections
45.9
23.1
±16.4
29.44.7% 52.0% 10,40435,8441,018 (24.4)1,061 (25.5)1.4Public
L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, S. Savarese. Learning an image-based motion context for multiple people tracking. In CVPR, 2014.
AdTobKF
64. online method using public detections
33.1
24.8
±12.1
34.54.0% 52.0% 6,20139,321666 (18.5)1,300 (36.1)206.5Public
Anonymous submission
ALExTRAC
65. using public detections
50.3
17.0
±12.1
17.33.9% 52.4% 9,23339,9331,859 (53.1)1,872 (53.5)3.7Public
A. Bewley, L. Ott, F. Ramos, B. Upcroft. ALExTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains. In International Conference on Robotics and Automation (ICRA), (to appear) 2016.
AR_WLS
66. using public detections
35.7
24.9
±14.5
35.46.1% 52.4% 8,07137,543551 (14.2)1,297 (33.3)2.1Public
Anonymous submission
EAMTTpub
67. online method using public detections
40.8
22.3
±14.2
32.85.4% 52.7% 7,92438,982833 (22.8)1,485 (40.6)12.2Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
LP_SSVM
68. using public detections
33.3
25.2
±13.7
34.05.8% 53.0% 8,36936,932646 (16.2)849 (21.3)41.3Public
S. Wang, C. Fowlkes. Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions. In International Journal of Computer Vision, 2016.
MTT
69. online method using public detections
40.3
25.0
±13.2
33.24.0% 53.0% 7,69137,833569 (14.8)1,218 (31.7)1.9Public
Anonymous submission
RMOT
70. online method using public detections
45.8
18.6
±17.5
32.65.3% 53.3% 12,47336,835684 (17.1)1,282 (32.0)7.9Public
J. Yoon, H. Yang, J. Lim, K. Yoon. Bayesian Multi-Object Tracking Using Motion Context from Multiple Objects. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
OLTT
71. using public detections
46.2
21.0
±12.7
24.63.3% 54.4% 8,37639,368794 (22.1)1,199 (33.4)10.9Public
Anonymous submission
SMOT
72. using public detections
57.1
18.2
±10.3
0.02.8% 54.8% 8,78040,3101,148 (33.4)2,132 (62.0)2.7Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
DCO_X
73. using public detections
42.3
19.6
±14.1
31.55.1% 54.9% 10,65238,232521 (13.8)819 (21.7)0.3Public
A. Milan, K. Schindler, S. Roth. Multi-Target Tracking by Discrete-Continuous Energy Minimization. In IEEE PAMI, 2016.
GMPHD
74. online method using public detections
40.8
18.5
±12.7
28.43.9% 55.3% 7,86441,766459 (14.3)1,266 (39.5)19.8Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
TC_ODAL
75. online method using public detections
56.2
15.1
±15.0
0.03.2% 55.8% 12,97038,538637 (17.1)1,716 (46.0)1.7Public
S. Bae, K. Yoon. Robust Online Multi-Object Tracking based on Tracklet Confidence and Online Discriminative Appearance Learning. In CVPR, 2014.
TO
76. using public detections
38.0
25.7
±13.5
32.74.3% 57.4% 4,77940,511383 (11.2)600 (17.6)5.0Public
S. Manen, R. Timofte, D. Dai, L. Gool. Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016.
JPDA_m
77. using public detections
33.3
23.8
±15.1
33.85.0% 58.1% 6,37340,084365 (10.5)869 (25.0)32.6Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
cuMOT
78. online method using public detections
49.0
6.8
±13.7
22.41.1% 59.4% 12,29844,142811 (28.8)1,306 (46.4)28.9Public
Anonymous submission
GSCR
79. online method using public detections
40.8
15.8
±10.5
27.91.8% 61.0% 7,59743,633514 (17.7)1,010 (34.8)28.1Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Online multi-person tracking based on global sparse collaborative representations. In ICIP, 2015.
TFMOT
80. online method using public detections
38.5
23.8
±11.9
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)11.3Public
Joint Cost Minimization for Multi-Object Tracking
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
JCM_MOT
81. online method using public detections
35.3
23.8
±12.0
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)11.3Public
Joint Cost Minimization for Multi-Object Tracking
SegTrack
82. using public detections
45.3
22.5
±15.2
31.55.8% 63.9% 7,89039,020697 (19.1)737 (20.2)0.2Public
A. Milan, L. Leal-Taixé, K. Schindler, I. Reid. Joint Tracking and Segmentation of Multiple Targets. In CVPR, 2015.
LINF1
83. using public detections
33.2
24.5
±15.4
34.85.5% 64.6% 5,86440,207298 (8.6)744 (21.5)7.5Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
11578372161440

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

TUD-Crossing

TUD-Crossing

(61.0% MOTA)

PETS09-S2L2

PETS09-S2L2

(40.6% MOTA)

ETH-Jelmoli

ETH-Jelmoli

(37.1% MOTA)

...

...

Venice-1

Venice-1

(18.9% MOTA)

ADL-Rundle-1

ADL-Rundle-1

(14.4% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.