2D MOT 2015 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
DeepMP
1. using public detections
15.8
40.5
±12.8
28.816.8% 35.2% 6,27929,654599 (11.6)1,034 (20.0)9.6Public
Anonymous submission
KCF
2. online method using public detections
20.4
38.9
±14.5
44.516.6% 31.5% 7,32129,501720 (13.9)1,440 (27.7)0.3Public
P. Chu, H. Fan, C. Tan, H. Ling. Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment. In WACV, 2019.
CRF_RNN15
3. using public detections
16.5
38.9
±15.4
49.320.9% 29.4% 10,66926,291591 (10.3)1,270 (22.2)3.2Public
Anonymous submission
AP_HWDPL_p
4. online method using public detections
15.0
38.5
±9.9
47.18.7% 37.4% 4,00533,203586 (12.8)1,263 (27.5)6.7Public
C. Long, A. Haizhou, S. Chong, Z. Zijie, B. Bo. Online Multi-Object Tracking with Convolutional Neural Networks. In 2017 IEEE International Conference on Image Processing (ICIP), 2017.
AMIR15
5. online method using public detections
20.5
37.6
±12.5
46.015.8% 26.8% 7,93329,3971,026 (19.7)2,024 (38.8)1.9Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
SST_MOT15
6. online method using public detections
26.5
35.8
±19.3
39.67.8% 39.0% 4,06533,6691,728 (38.2)1,312 (29.0)6.3Public
Shijie Sun, Naveed Akhtar, Ajmal Mian
JointMC
7. using public detections
19.0
35.6
±18.9
45.123.2% 39.3% 10,58028,508457 (8.5)969 (18.1)0.6Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
RAR15pub
8. online method using public detections
21.2
35.1
±12.5
45.413.0% 42.3% 6,77132,717381 (8.1)1,523 (32.6)5.4Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
mLK
9. online method using public detections
18.8
35.1
±12.9
47.512.3% 38.3% 5,67833,815383 (8.5)1,175 (26.1)1.0Public
Yuan Zhang, Di Xie and Shiliang Pu (Hikvision Research Institute)
HybridDAT
10. online method using public detections
19.3
35.0
±15.0
47.711.4% 42.2% 8,45531,140358 (7.3)1,267 (25.7)4.6Public
M. Yang, Y. Jia. A Hybrid Data Association Framework for Robust Online Multi-Object Tracking. In IEEE Transactions on Image Processing, 2016.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
AM
11. online method using public detections
18.3
34.3
±13.7
48.311.4% 43.4% 5,15434,848348 (8.0)1,463 (33.8)0.5Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
TSMLCDEnew
12. using public detections
22.0
34.3
±13.1
44.114.0% 39.4% 7,86931,908618 (12.9)959 (20.0)6.5Public
B. Wang, G. Wang, K. L. Chan, L. Wang. Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation. In arXiv:1511.06654, 2015.
QuadMOT
13. using public detections
24.1
33.8
±14.8
40.412.9% 36.9% 7,89832,061703 (14.7)1,430 (29.9)3.7Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
NOMT
14. using public detections
19.2
33.7
±16.2
44.612.2% 44.0% 7,76232,547442 (9.4)823 (17.5)11.5Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
DCCRF
15. online method using public detections
24.8
33.6
±11.0
39.110.4% 37.6% 5,91734,002866 (19.4)1,566 (35.1)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
siam
16. online method using public detections
28.8
33.0
±17.0
36.28.9% 43.3% 5,10135,190853 (20.0)1,078 (25.2)1.9Public
Anonymous submission
TDAM
17. online method using public detections
24.3
33.0
±9.8
46.113.3% 39.1% 10,06430,617464 (9.2)1,506 (30.0)5.9Public
M. Yang, Y. Jia. Temporal dynamic appearance modeling for online multi-person tracking. In Computer Vision and Image Understanding, 2016.
CDA_DDALpb
18. online method using public detections
23.6
32.8
±10.6
38.89.7% 42.2% 4,98335,690614 (14.7)1,583 (37.8)2.3Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
MHT__ReID
19. using public detections
22.5
32.6
±15.1
45.014.3% 45.5% 8,10132,907376 (8.1)766 (16.5)0.3Public
Anonymous submission
MHT_DAM
20. using public detections
21.9
32.4
±15.6
45.316.0% 43.8% 9,06432,060435 (9.1)826 (17.3)0.7Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
LFNF
21. using public detections
27.2
31.6
±12.3
33.19.6% 41.7% 5,94335,095961 (22.4)1,106 (25.8)4.0Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
CF_MCMC
22. using public detections
27.4
31.4
±11.3
36.410.3% 40.9% 8,79832,541814 (17.3)1,711 (36.4)3.2Public
Anonymous submission
PHD_GSDL
23. online method using public detections
31.0
30.5
±14.9
38.87.6% 41.2% 6,53435,284879 (20.6)2,208 (51.9)8.2Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
MDP
24. online method using public detections
26.5
30.3
±14.6
44.713.0% 38.4% 9,71732,422680 (14.4)1,500 (31.8)1.1Public
Y. Xiang, A. Alahi, S. Savarese. Learning to Track: Online Multi-Object Tracking by Decision Making. In International Conference on Computer Vision (ICCV), 2015.
MCF_PHD
25. using public detections
24.8
29.9
±20.0
38.211.9% 44.0% 8,89233,529656 (14.4)989 (21.8)12.2Public
N. Wojke, D. Paulus. Global data association for the Probability Hypothesis Density filter using network flows. In 2016 IEEE International Conference on Robotics and Automation, ICRA, 2016.
CNNTCM
26. using public detections
25.3
29.6
±13.9
36.811.2% 44.0% 7,78634,733712 (16.4)943 (21.7)1.7Public
B. Wang, K. L. Chan, L. Wang, B. Shuai, Z. Zuo, T. Liu, G. Wang. Joint Learning of Convolutional Neural Networks and Temporally Constrained Metrics for Tracklet Association. In DeepVision Workshop (CVPR), 2016.
RSCNN
27. using public detections
27.9
29.5
±23.9
37.012.9% 36.3% 11,86630,474976 (19.4)1,176 (23.3)4.0Public
Heba Mahgoub, Khaled Mostafa, Khaled T. Wassif and Ibrahim Farag, “Multi-Target Tracking Using Hierarchical Convolutional Features and Motion Cues” International Journal of Advanced Computer Science and Applications(IJACSA), 8(11), 2017.
DSA_MOT
28. online method using public detections
24.0
29.4
±13.0
38.210.0% 45.1% 7,69135,146545 (12.7)1,133 (26.5)9.6Public
Anonymous submission
TBSS15
29. online method using public detections
31.4
29.2
±12.5
37.26.8% 43.8% 6,06836,779649 (16.2)1,508 (37.6)11.5Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
SCEA
30. online method using public detections
29.8
29.1
±12.2
37.28.9% 47.3% 6,06036,912604 (15.1)1,182 (29.6)6.8Public
J. Yoon, C. Lee, M. Yang, K. Yoon. Online Multi-object Tracking via Structural Constraint Event Aggregation. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
SiameseCNN
31. using public detections
29.8
29.0
±15.1
34.38.5% 48.4% 5,16037,798639 (16.6)1,316 (34.2)52.8Public
Laura Leal-Taixé, Cristian Canton-Ferrer, Konrad Schindler. Learning by Tracking: Siamese CNN for Robust Target Association. DeepVision Workshop (CVPR), Las Vegas (Nevada, USA), June 2016.
HAM_INTP15
32. online method using public detections
22.8
28.6
±13.8
41.410.0% 44.0% 7,48535,910460 (11.1)1,038 (25.0)18.7Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
DAC_min
33. online method using public detections
24.4
28.3
±13.4
38.39.8% 45.5% 8,39635,122543 (12.7)1,162 (27.1)11.6Public
DS_RNN
34. online method using public detections
32.4
27.8
±11.4
29.67.1% 37.9% 6,90335,2382,192 (51.4)3,011 (70.6)19.3Public
Anonymous submission
SLTV15
35. online method using public detections
26.8
27.6
±15.1
40.37.2% 51.9% 6,58137,566358 (9.2)884 (22.7)20.9Public
Gwangju Institute of Science and Technology(GIST), Machine Learning and Vision Laboratory
TBX
36. using public detections
38.0
27.5
±13.3
33.810.4% 45.8% 7,96835,810759 (18.2)1,528 (36.6)0.1Public
R. Henschel, L. Leal-Taixé, B. Rosenhahn, K. Schindler. Tracking with multi-level features. In arXiv:1607.07304, 2016.
oICF
37. online method using public detections
33.8
27.1
±14.9
40.56.4% 48.7% 7,59436,757454 (11.3)1,660 (41.3)1.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
HOHOTRACK
38. online method using public detections
28.1
26.8
±21.7
32.928.6% 16.9% 18,99424,5491,411 (23.5)3,417 (56.9)26.7Public
Anonymous submission
TO
39. using public detections
34.3
25.7
±13.5
32.74.3% 57.4% 4,77940,511383 (11.2)600 (17.6)5.0Public
S. Manen, R. Timofte, D. Dai, L. Gool. Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016.
LP_SSVM
40. using public detections
31.3
25.2
±13.7
34.05.8% 53.0% 8,36936,932646 (16.2)849 (21.3)41.3Public
S. Wang, C. Fowlkes. Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions. In International Journal of Computer Vision, 2016.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
HAM_SADF
41. online method using public detections
27.3
25.2
±13.9
37.85.7% 58.3% 7,33038,275357 (9.5)745 (19.8)18.7Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
ELP
42. using public detections
36.6
25.0
±10.8
26.27.5% 43.8% 7,34537,3441,396 (35.6)1,804 (46.0)5.7Public
N. McLaughlin, J. Martinez Del Rincon, P. Miller. Enhancing Linear Programming with Motion Modeling for Multi-target Tracking. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
LINF1
43. using public detections
30.3
24.5
±15.4
34.85.5% 64.6% 5,86440,207298 (8.6)744 (21.5)7.5Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
TENSOR
44. using public detections
39.5
24.3
±13.2
24.15.5% 46.6% 6,64438,5821,271 (34.2)1,304 (35.1)24.0Public
X. Shi, H. Ling, Y. Pang, W. Hu, P. Chu, J. Xing. Rank-1 Tensor Approximation for High-Order Association in Multi-target Tracking. In IJCV, 2019.
TFMOT
45. online method using public detections
34.9
23.8
±11.9
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)11.3Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
JPDA_m
46. using public detections
29.8
23.8
±15.1
33.85.0% 58.1% 6,37340,084365 (10.5)869 (25.0)32.6Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
MotiCon
47. using public detections
41.3
23.1
±16.4
29.44.7% 52.0% 10,40435,8441,018 (24.4)1,061 (25.5)1.4Public
L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, S. Savarese. Learning an image-based motion context for multiple people tracking. In CVPR, 2014.
DEEPDA_MOT
48. online method using public detections
36.9
22.5
±17.7
25.96.4% 62.0% 7,34639,0921,159 (31.9)1,538 (42.3)172.8Public
K. Yoon, D. Kim, Y. Yoon, M. Jeon. Data Association for Multi-Object Tracking via Deep Neural Networks. In Sensors, 2019.
SegTrack
49. using public detections
40.8
22.5
±15.2
31.55.8% 63.9% 7,89039,020697 (19.1)737 (20.2)0.2Public
A. Milan, L. Leal-Taixé, K. Schindler, I. Reid. Joint Tracking and Segmentation of Multiple Targets. In CVPR, 2015.
DCOR
50. online method using public detections
36.2
22.4
±12.1
24.73.3% 57.4% 5,60341,410634 (19.4)1,686 (51.7)37.6Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
EAMTTpub
51. online method using public detections
37.2
22.3
±14.2
32.85.4% 52.7% 7,92438,982833 (22.8)1,485 (40.6)12.2Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
SAS_MOT15
52. using public detections
40.8
22.2
±13.8
27.23.1% 61.6% 5,59141,531700 (21.6)1,240 (38.3)8.9Public
A. Maksai, P. Fua. Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking. In CVPR, 2019.
EDA_GNN
53. online method using public detections
33.8
21.8
±13.8
27.89.0% 40.2% 11,97034,5871,488 (34.0)1,851 (42.4)56.4Public
Paper ID 2713
CppSORT
54. online method using public detections
38.6
21.7
±11.8
26.83.7% 49.1% 8,42238,4541,231 (32.9)2,005 (53.6)1,112.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
OMT_DFH
55. online method using public detections
32.1
21.2
±17.2
37.37.1% 46.5% 13,21834,657563 (12.9)1,255 (28.8)28.6Public
J. Ju, D. Kim, B. Ku, D. Han, H. Ko. Online multi-object tracking with efficient track drift and fragmentation handling. In J. Opt. Soc. Am. A, 2017.
HSJ_Sia
56. online method using public detections
40.3
20.9
±13.0
29.24.0% 51.6% 6,45740,4771,695 (49.7)2,734 (80.1)70.3Public
Anonymous submission
MTSTracker
57. online method using public detections
35.7
20.6
±18.2
31.99.0% 36.9% 15,16132,2121,387 (29.2)2,357 (49.5)19.3Public
F. Nguyen Thi Lan Anh, F. Bremond. Multi-Object Tracking using Multi-Channel Part Appearance Representation. In International conference on Advanced video and Signal Based Surveillance, 2017.
TC_SIAMESE
58. online method using public detections
36.9
20.2
±13.9
32.62.6% 67.5% 6,12742,596294 (9.6)825 (26.9)13.0Public
Y. Yoon, Y. Song, K. Yoon, M. Jeon. Online Multiple-Object Tracking using Selective Deep Appearance Matching. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2018.
LP2D
59. using public detections
39.3
19.8
±14.2
0.06.7% 41.2% 11,58036,0451,649 (39.9)1,712 (41.4)112.1Public
MOT baseline: Linear programming on 2D image coordinates.
DCO_X
60. using public detections
37.9
19.6
±14.1
31.55.1% 54.9% 10,65238,232521 (13.8)819 (21.7)0.3Public
A. Milan, K. Schindler, S. Roth. Multi-Target Tracking by Discrete-Continuous Energy Minimization. In IEEE PAMI, 2016.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
CEM
61. using public detections
36.9
19.3
±17.5
0.08.5% 46.5% 14,18034,591813 (18.6)1,023 (23.4)1.1Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
RNN_LSTM
62. online method using public detections
43.2
19.0
±15.2
17.15.5% 45.6% 11,57836,7061,490 (37.0)2,081 (51.7)165.2Public
A. Milan, S. Rezatofighi, A. Dick, I. Reid, K. Schindler. Online Multi-Target Tracking using Recurrent Neural Networks. In AAAI, 2017.
RMOT
63. online method using public detections
41.8
18.6
±17.5
32.65.3% 53.3% 12,47336,835684 (17.1)1,282 (32.0)7.9Public
J. Yoon, H. Yang, J. Lim, K. Yoon. Bayesian Multi-Object Tracking Using Motion Context from Multiple Objects. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
TSDA_OAL
64. online method using public detections
36.6
18.6
±17.6
36.19.4% 42.3% 16,35032,853806 (17.3)1,544 (33.2)19.7Public
H. Ko. Online multi-person tracking with two-stage data association and online appearance model learning. In IET Computer Vision, 2017.
GMPHD
65. online method using public detections
37.3
18.5
±12.7
28.43.9% 55.3% 7,86441,766459 (14.3)1,266 (39.5)19.8Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
KCF_Simple
66. online method using public detections
45.3
18.3
±11.1
25.12.6% 49.8% 8,97639,8051,436 (40.8)2,634 (74.8)35.6Public
Anonymous submission
SMOT
67. using public detections
51.8
18.2
±10.3
0.02.8% 54.8% 8,78040,3101,148 (33.4)2,132 (62.0)2.7Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
ALExTRAC
68. using public detections
45.9
17.0
±12.1
17.33.9% 52.4% 9,23339,9331,859 (53.1)1,872 (53.5)3.7Public
A. Bewley, L. Ott, F. Ramos, B. Upcroft. ALExTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains. In International Conference on Robotics and Automation (ICRA), (to appear) 2016.
TBD
69. using public detections
49.9
15.9
±17.6
0.06.4% 47.9% 14,94334,7771,939 (44.7)1,963 (45.2)0.7Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
GSCR
70. online method using public detections
37.6
15.8
±10.5
27.91.8% 61.0% 7,59743,633514 (17.7)1,010 (34.8)28.1Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Online multi-person tracking based on global sparse collaborative representations. In ICIP, 2015.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TC_ODAL
71. online method using public detections
50.8
15.1
±15.0
0.03.2% 55.8% 12,97038,538637 (17.1)1,716 (46.0)1.7Public
S. Bae, K. Yoon. Robust Online Multi-Object Tracking based on Tracklet Confidence and Online Discriminative Appearance Learning. In CVPR, 2014.
DP_NMS
72. using public detections
39.1
14.5
±14.5
19.76.0% 40.8% 13,17134,8144,537 (104.7)3,090 (71.3)444.8Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
LDCT
73. online method using public detections
37.1
4.7
±41.3
16.811.4% 32.5% 14,06632,15612,348 (259.1)2,918 (61.2)20.7Public
F. Solera, S. Calderara, R. Cucchiara. Learning to Divide and Conquer for Online Multi-Target Tracking. In ICCV, 2015
JPDA_OP
74. online method using public detections
33.8
3.6
±11.3
7.50.4% 96.1% 1,02458,18929 (5.5)119 (22.5)77.7Public
Anonymous submission

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
11578372161440

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

TUD-Crossing

TUD-Crossing

(62.8% MOTA)

PETS09-S2L2

PETS09-S2L2

(42.3% MOTA)

ETH-Jelmoli

ETH-Jelmoli

(38.5% MOTA)

...

...

Venice-1

Venice-1

(21.4% MOTA)

ADL-Rundle-1

ADL-Rundle-1

(17.0% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.