2D MOT 2015 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
JPDA_OP
1. online method using public detections
39.1
3.6
±11.3
7.50.4% 96.1% 1,02458,18929 (5.5)119 (22.5)77.7Public
Anonymous submission
GSCR
2. online method using public detections
43.1
15.8
±10.5
27.91.8% 61.0% 7,59743,633514 (17.7)1,010 (34.8)28.1Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Online multi-person tracking based on global sparse collaborative representations. In ICIP, 2015.
TC_SIAMESE
3. online method using public detections
42.1
20.2
±13.9
32.62.6% 67.5% 6,12742,596294 (9.6)825 (26.9)13.0Public
Y. Yoon, Y. Song, K. Yoon, M. Jeon. Online Multiple-Object Tracking using Selective Deep Appearance Matching. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2018.
KCF_Simple
4. online method using public detections
51.8
18.3
±11.1
25.12.6% 49.8% 8,97639,8051,436 (40.8)2,634 (74.8)35.6Public
Anonymous submission
SMOT
5. using public detections
59.3
18.2
±10.3
0.02.8% 54.8% 8,78040,3101,148 (33.4)2,132 (62.0)2.7Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
SAS_MOT15
6. using public detections
46.6
22.2
±13.8
27.23.1% 61.6% 5,59141,531700 (21.6)1,240 (38.3)8.9Public
A. Maksai, P. Fua. Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking. In CVPR, 2019.
TC_ODAL
7. online method using public detections
57.6
15.1
±15.0
0.03.2% 55.8% 12,97038,538637 (17.1)1,716 (46.0)1.7Public
S. Bae, K. Yoon. Robust Online Multi-Object Tracking based on Tracklet Confidence and Online Discriminative Appearance Learning. In CVPR, 2014.
DCOR
8. online method using public detections
41.3
22.4
±12.1
24.73.3% 57.4% 5,60341,410634 (19.4)1,686 (51.7)37.6Public
Anonymous submission
CppSORT
9. online method using public detections
44.2
21.7
±11.8
26.83.7% 49.1% 8,42238,4541,231 (32.9)2,005 (53.6)1,112.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
ALExTRAC
10. using public detections
52.7
17.0
±12.1
17.33.9% 52.4% 9,23339,9331,859 (53.1)1,872 (53.5)3.7Public
A. Bewley, L. Ott, F. Ramos, B. Upcroft. ALExTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains. In International Conference on Robotics and Automation (ICRA), (to appear) 2016.
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
GMPHD
11. online method using public detections
42.8
18.5
±12.7
28.43.9% 55.3% 7,86441,766459 (14.3)1,266 (39.5)19.8Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
AdTobKF
12. online method using public detections
33.7
24.8
±12.1
34.54.0% 52.0% 6,20139,321666 (18.5)1,300 (36.1)206.5Public
K. Loumponias, A. Dimou, N. Vretos, P. Daras. Adaptive Tobit Kalman-Based Tracking. In 2018 14th International Conference on Signal-Image Technology \& Internet-Based Systems (SITIS), 2018.
HSJ_Sia
13. online method using public detections
46.9
20.9
±13.0
29.24.0% 51.6% 6,45740,4771,695 (49.7)2,734 (80.1)70.3Public
Anonymous submission
TO
14. using public detections
39.3
25.7
±13.5
32.74.3% 57.4% 4,77940,511383 (11.2)600 (17.6)5.0Public
S. Manen, R. Timofte, D. Dai, L. Gool. Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016.
MotiCon
15. using public detections
47.6
23.1
±16.4
29.44.7% 52.0% 10,40435,8441,018 (24.4)1,061 (25.5)1.4Public
L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, S. Savarese. Learning an image-based motion context for multiple people tracking. In CVPR, 2014.
TFMOT
16. online method using public detections
40.1
23.8
±11.9
32.34.9% 62.0% 4,53341,873404 (12.7)792 (24.9)11.3Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
JPDA_m
17. using public detections
34.7
23.8
±15.1
33.85.0% 58.1% 6,37340,084365 (10.5)869 (25.0)32.6Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
DPT
18. online method using public detections
53.6
16.1
±12.1
27.55.0% 50.3% 10,33040,1541,076 (31.1)1,794 (51.8)0.4Public
PoMOT
19. online method using public detections
55.5
16.7
±13.8
28.85.0% 50.3% 10,18540,025968 (27.8)1,748 (50.2)0.3Public
Anonymous submission
DCO_X
20. using public detections
43.6
19.6
±14.1
31.55.1% 54.9% 10,65238,232521 (13.8)819 (21.7)0.3Public
A. Milan, K. Schindler, S. Roth. Multi-Target Tracking by Discrete-Continuous Energy Minimization. In IEEE PAMI, 2016.
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
RMOT
21. online method using public detections
47.7
18.6
±17.5
32.65.3% 53.3% 12,47336,835684 (17.1)1,282 (32.0)7.9Public
J. Yoon, H. Yang, J. Lim, K. Yoon. Bayesian Multi-Object Tracking Using Motion Context from Multiple Objects. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
EAMTTpub
22. online method using public detections
42.1
22.3
±14.2
32.85.4% 52.7% 7,92438,982833 (22.8)1,485 (40.6)12.2Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
LINF1
23. using public detections
34.8
24.5
±15.4
34.85.5% 64.6% 5,86440,207298 (8.6)744 (21.5)7.5Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
RNN_LSTM
24. online method using public detections
49.9
19.0
±15.2
17.15.5% 45.6% 11,57836,7061,490 (37.0)2,081 (51.7)165.2Public
A. Milan, S. Rezatofighi, A. Dick, I. Reid, K. Schindler. Online Multi-Target Tracking using Recurrent Neural Networks. In AAAI, 2017.
TENSOR
25. using public detections
45.2
24.3
±13.2
24.15.5% 46.6% 6,64438,5821,271 (34.2)1,304 (35.1)24.0Public
X. Shi, H. Ling, Y. Pang, W. Hu, P. Chu, J. Xing. Rank-1 Tensor Approximation for High-Order Association in Multi-target Tracking. In IJCV, 2019.
RKCF
26. online method using public detections
52.4
16.8
±13.5
29.05.5% 50.1% 10,33639,805980 (27.8)1,750 (49.7)6.2Public
Anonymous submission
HAM_SADF
27. online method using public detections
31.4
25.2
±13.9
37.85.7% 58.3% 7,33038,275357 (9.5)745 (19.8)18.7Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
SegTrack
28. using public detections
46.7
22.5
±15.2
31.55.8% 63.9% 7,89039,020697 (19.1)737 (20.2)0.2Public
A. Milan, L. Leal-Taixé, K. Schindler, I. Reid. Joint Tracking and Segmentation of Multiple Targets. In CVPR, 2015.
LP_SSVM
29. using public detections
35.8
25.2
±13.7
34.05.8% 53.0% 8,36936,932646 (16.2)849 (21.3)41.3Public
S. Wang, C. Fowlkes. Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions. In International Journal of Computer Vision, 2016.
DP_NMS
30. using public detections
45.3
14.5
±14.5
19.76.0% 40.8% 13,17134,8144,537 (104.7)3,090 (71.3)444.8Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
TBD
31. using public detections
57.2
15.9
±17.6
0.06.4% 47.9% 14,94334,7771,939 (44.7)1,963 (45.2)0.7Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
oICF
32. online method using public detections
38.3
27.1
±14.9
40.56.4% 48.7% 7,59436,757454 (11.3)1,660 (41.3)1.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
DEEPDA_MOT
33. online method using public detections
42.3
22.5
±17.7
25.96.4% 62.0% 7,34639,0921,159 (31.9)1,538 (42.3)172.8Public
K. Yoon, D. Kim, Y. Yoon, M. Jeon. Data Association for Multi-Object Tracking via Deep Neural Networks. In Sensors, 2019.
GMMA_intp
34. online method using public detections
35.0
27.3
±12.0
36.66.5% 43.1% 7,84835,817987 (23.7)1,848 (44.3)132.5Public
Y. Song, Y. Yoon, K. Yoon, M. Jeon. Online and Real-Time Tracking with the GMPHD Filter using Group Management and Relative Motion Analysis. In Proc. IEEE Int. Workshop Traffic Street Surveill. Safety Secur. (AVSS), 2018.
LP2D
35. using public detections
45.3
19.8
±14.2
0.06.7% 41.2% 11,58036,0451,649 (39.9)1,712 (41.4)112.1Public
MOT baseline: Linear programming on 2D image coordinates.
TBSS15
36. online method using public detections
35.6
29.2
±12.5
37.26.8% 43.8% 6,06836,779649 (16.2)1,508 (37.6)11.5Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
OMT_DFH
37. online method using public detections
36.8
21.2
±17.2
37.37.1% 46.5% 13,21834,657563 (12.9)1,255 (28.8)28.6Public
J. Ju, D. Kim, B. Ku, D. Han, H. Ko. Online multi-object tracking with efficient track drift and fragmentation handling. In J. Opt. Soc. Am. A, 2017.
SLTV15
38. online method using public detections
31.4
27.6
±15.1
40.37.2% 51.9% 6,58137,566358 (9.2)884 (22.7)20.9Public
Gwangju Institute of Science and Technology(GIST), Machine Learning and Vision Laboratory
ELP
39. using public detections
42.3
25.0
±10.8
26.27.5% 43.8% 7,34537,3441,396 (35.6)1,804 (46.0)5.7Public
N. McLaughlin, J. Martinez Del Rincon, P. Miller. Enhancing Linear Programming with Motion Modeling for Multi-target Tracking. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2015.
PHD_GSDL
40. online method using public detections
35.7
30.5
±14.9
38.87.6% 41.2% 6,53435,284879 (20.6)2,208 (51.9)8.2Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
CEM
41. using public detections
41.9
19.3
±17.5
0.08.5% 46.5% 14,18034,591813 (18.6)1,023 (23.4)1.1Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
SiameseCNN
42. using public detections
34.0
29.0
±15.1
34.38.5% 48.4% 5,16037,798639 (16.6)1,316 (34.2)52.8Public
Laura Leal-Taixé, Cristian Canton-Ferrer, Konrad Schindler. Learning by Tracking: Siamese CNN for Robust Target Association. DeepVision Workshop (CVPR), Las Vegas (Nevada, USA), June 2016.
AP_HWDPL_p
43. online method using public detections
17.9
38.5
±9.9
47.18.7% 37.4% 4,00533,203586 (12.8)1,263 (27.5)6.7Public
C. Long, A. Haizhou, S. Chong, Z. Zijie, B. Bo. Online Multi-Object Tracking with Convolutional Neural Networks. In 2017 IEEE International Conference on Image Processing (ICIP), 2017.
SCEA
44. online method using public detections
34.0
29.1
±12.2
37.28.9% 47.3% 6,06036,912604 (15.1)1,182 (29.6)6.8Public
J. Yoon, C. Lee, M. Yang, K. Yoon. Online Multi-object Tracking via Structural Constraint Event Aggregation. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
siam
45. online method using public detections
33.3
33.0
±17.0
36.28.9% 43.3% 5,10135,190853 (20.0)1,078 (25.2)1.9Public
Anonymous submission
MTSTracker
46. online method using public detections
42.3
20.6
±18.2
31.99.0% 36.9% 15,16132,2121,387 (29.2)2,357 (49.5)19.3Public
F. Nguyen Thi Lan Anh, F. Bremond. Multi-Object Tracking using Multi-Channel Part Appearance Representation. In International conference on Advanced video and Signal Based Surveillance, 2017.
EDA_GNN
47. online method using public detections
39.8
21.8
±13.8
27.89.0% 40.2% 11,97034,5871,488 (34.0)1,851 (42.4)56.4Public
Paper ID 2713
DSA_MOT
48. online method using public detections
25.3
29.4
±12.9
41.29.2% 50.2% 7,70535,364329 (7.8)789 (18.6)9.6Public
Anonymous submission
UN_DAM
49. online method using public detections
29.9
29.7
±12.3
41.49.2% 49.9% 7,61035,269318 (7.5)674 (15.8)7.7Public
Anonymous submission
TSDA_OAL
50. online method using public detections
42.1
18.6
±17.6
36.19.4% 42.3% 16,35032,853806 (17.3)1,544 (33.2)19.7Public
H. Ko. Online multi-person tracking with two-stage data association and online appearance model learning. In IET Computer Vision, 2017.
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
LFNF
51. using public detections
31.0
31.6
±12.3
33.19.6% 41.7% 5,94335,095961 (22.4)1,106 (25.8)4.0Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
CDA_DDALpb
52. online method using public detections
27.0
32.8
±10.6
38.89.7% 42.2% 4,98335,690614 (14.7)1,583 (37.8)2.3Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
DAC_min
53. online method using public detections
28.1
28.3
±13.4
38.39.8% 45.5% 8,39635,122543 (12.7)1,162 (27.1)11.6Public
HAM_INTP15
54. online method using public detections
26.5
28.6
±13.8
41.410.0% 44.0% 7,48535,910460 (11.1)1,038 (25.0)18.7Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
CF_MCMC
55. using public detections
31.4
31.4
±11.3
36.410.3% 40.9% 8,79832,541814 (17.3)1,711 (36.4)3.2Public
Anonymous submission
TBX
56. using public detections
43.4
27.5
±13.3
33.810.4% 45.8% 7,96835,810759 (18.2)1,528 (36.6)0.1Public
R. Henschel, L. Leal-Taixé, B. Rosenhahn, K. Schindler. Tracking with multi-level features. In arXiv:1607.07304, 2016.
DCCRF
57. online method using public detections
28.9
33.6
±11.0
39.110.4% 37.6% 5,91734,002866 (19.4)1,566 (35.1)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
CNNTCM
58. using public detections
29.3
29.6
±13.9
36.811.2% 44.0% 7,78634,733712 (16.4)943 (21.7)1.7Public
B. Wang, K. L. Chan, L. Wang, B. Shuai, Z. Zuo, T. Liu, G. Wang. Joint Learning of Convolutional Neural Networks and Temporally Constrained Metrics for Tracklet Association. In DeepVision Workshop (CVPR), 2016.
LDCT
59. online method using public detections
43.8
4.7
±41.3
16.811.4% 32.5% 14,06632,15612,348 (259.1)2,918 (61.2)20.7Public
F. Solera, S. Calderara, R. Cucchiara. Learning to Divide and Conquer for Online Multi-Target Tracking. In ICCV, 2015
HybridDAT
60. online method using public detections
22.3
35.0
±15.0
47.711.4% 42.2% 8,45531,140358 (7.3)1,267 (25.7)4.6Public
M. Yang, Y. Jia. A Hybrid Data Association Framework for Robust Online Multi-Object Tracking. In IEEE Transactions on Image Processing, 2016.
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
AM
61. online method using public detections
21.6
34.3
±13.7
48.311.4% 43.4% 5,15434,848348 (8.0)1,463 (33.8)0.5Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
GMPHD_OGM
62. online method using public detections
25.2
30.7
±12.6
38.811.5% 38.1% 6,50235,0301,034 (24.1)1,351 (31.4)169.5Public
Y. Song, K. Yoon, Y. Yoon, K. Yow, M. Jeon. Online Multi-Object Tracking Framework with the GMPHD Filter and Occlusion Group Management. In arXiv:1907.13347, 2019.
MCF_PHD
63. using public detections
28.8
29.9
±20.0
38.211.9% 44.0% 8,89233,529656 (14.4)989 (21.8)12.2Public
N. Wojke, D. Paulus. Global data association for the Probability Hypothesis Density filter using network flows. In 2016 IEEE International Conference on Robotics and Automation, ICRA, 2016.
NOMT
64. using public detections
22.8
33.7
±16.2
44.612.2% 44.0% 7,76232,547442 (9.4)823 (17.5)11.5Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
mLK
65. online method using public detections
21.8
35.1
±12.9
47.512.3% 38.3% 5,67833,815383 (8.5)1,175 (26.1)1.0Public
Yuan Zhang, Di Xie and Shiliang Pu (Hikvision Research Institute)
INARLA
66. online method using public detections
31.2
34.7
±13.2
42.112.5% 30.0% 9,85529,1581,112 (21.2)2,848 (54.2)2.6Public
H. Wu, Y. Hu, K. Wang, H. Li, L. Nie, H. Cheng. Instance-aware representation learning and association for online multi-person tracking. In Pattern Recognition, 2019.
SNM
67. online method using public detections
33.6
31.3
±16.5
38.212.6% 35.4% 8,90332,393926 (19.6)2,382 (50.4)14.8Public
Anonymous submission
QuadMOT
68. using public detections
28.3
33.8
±14.8
40.412.9% 36.9% 7,89832,061703 (14.7)1,430 (29.9)3.7Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
RSCNN
69. using public detections
33.0
29.5
±23.9
37.012.9% 36.3% 11,86630,474976 (19.4)1,176 (23.3)4.0Public
Heba Mahgoub, Khaled Mostafa, Khaled T. Wassif and Ibrahim Farag, “Multi-Target Tracking Using Hierarchical Convolutional Features and Motion Cues” International Journal of Advanced Computer Science and Applications(IJACSA), 8(11), 2017.
MDP
70. online method using public detections
30.6
30.3
±14.6
44.713.0% 38.4% 9,71732,422680 (14.4)1,500 (31.8)1.1Public
Y. Xiang, A. Alahi, S. Savarese. Learning to Track: Online Multi-Object Tracking by Decision Making. In International Conference on Computer Vision (ICCV), 2015.
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
RAR15pub
71. online method using public detections
24.8
35.1
±12.5
45.413.0% 42.3% 6,77132,717381 (8.1)1,523 (32.6)5.4Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
TDAM
72. online method using public detections
28.2
33.0
±9.8
46.113.3% 39.1% 10,06430,617464 (9.2)1,506 (30.0)5.9Public
M. Yang, Y. Jia. Temporal dynamic appearance modeling for online multi-person tracking. In Computer Vision and Image Understanding, 2016.
TSMLCDEnew
73. using public detections
25.5
34.3
±13.1
44.114.0% 39.4% 7,86931,908618 (12.9)959 (20.0)6.5Public
B. Wang, G. Wang, K. L. Chan, L. Wang. Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation. In arXiv:1511.06654, 2015.
AMIR15
74. online method using public detections
24.7
37.6
±12.5
46.015.8% 26.8% 7,93329,3971,026 (19.7)2,024 (38.8)1.9Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
MHT_DAM
75. using public detections
25.8
32.4
±15.6
45.316.0% 43.8% 9,06432,060435 (9.1)826 (17.3)0.7Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
KCF
76. online method using public detections
24.3
38.9
±14.5
44.516.6% 31.5% 7,32129,501720 (13.9)1,440 (27.7)0.3Public
P. Chu, H. Fan, C. Tan, H. Ling. Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment. In WACV, 2019.
DeepMP
77. using public detections
18.5
40.5
±12.8
28.816.8% 35.2% 6,27929,654599 (11.6)1,034 (20.0)9.6Public
Anonymous submission
MHT__ReID
78. using public detections
24.9
33.0
±15.1
46.417.6% 42.6% 8,72532,046421 (8.8)851 (17.8)0.3Public
Anonymous submission
Tracktor15
79. online method using public detections
28.4
44.1
±11.7
46.718.0% 26.2% 6,47726,5771,318 (23.2)1,790 (31.5)0.9Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
CRF_RNN15
80. using public detections
19.3
38.9
±15.1
49.320.9% 29.4% 10,66926,291591 (10.3)1,270 (22.2)3.2Public
Anonymous submission
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
CRFTrack_
81. using public detections
20.3
40.0
±14.5
49.623.0% 28.6% 10,29525,917658 (11.4)1,508 (26.1)3.2Public
Anonymous submission
JointMC
82. using public detections
22.7
35.6
±18.9
45.123.2% 39.3% 10,58028,508457 (8.5)969 (18.1)0.6Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
HOHOTRACK
83. online method using public detections
33.3
26.8
±21.7
32.928.6% 16.9% 18,99424,5491,411 (23.5)3,417 (56.9)26.7Public
Anonymous submission
MHTREID15
84. using public detections
23.3
40.0
±16.2
49.429.7% 24.4% 12,78023,378684 (11.0)1,112 (17.9)0.5Public
Anonymous submission
MR
85. using public detections
26.7
36.6
±16.6
47.233.1% 21.5% 16,69621,428850 (13.1)1,156 (17.8)0.3Public
Anonymous submission

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
11578372161440

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

TUD-Crossing

TUD-Crossing

(63.3% MOTA)

PETS09-S2L2

PETS09-S2L2

(42.6% MOTA)

ETH-Jelmoli

ETH-Jelmoli

(37.3% MOTA)

...

...

Venice-1

Venice-1

(21.3% MOTA)

ADL-Rundle-1

ADL-Rundle-1

(17.0% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.