MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
dpt_dpt
1. using public detections new
23.7
61.3
±10.7
60.432.1% 18.6% 12,41157,481739 (10.8)1,960 (28.6)148.0Public
Anonymous submission
DS_v2
2. using public detections
25.1
59.3
±12.9
57.524.2% 29.1% 7,46565,810887 (13.9)2,738 (42.8)39.4Public
Anonymous submission
DpTrack
3. using public detections
29.3
59.3
±18.7
52.827.4% 24.6% 8,56663,6032,045 (31.4)1,555 (23.9)10.4Public
Anonymous submission
ReTrack16
4. using public detections
30.1
57.0
±12.3
54.221.9% 34.3% 4,44673,258688 (11.5)1,543 (25.8)0.8Public
Anonymous submission
MHT___ReID
5. using public detections
39.4
56.4
±11.6
54.239.7% 17.4% 23,79154,1691,478 (21.0)1,547 (22.0)0.5Public
Anonymous submission
MTT_TPR
6. using public detections
34.3
54.9
±11.7
53.118.7% 34.8% 4,13076,6731,447 (25.0)3,693 (63.7)6.7Public
Anonymous submission
Tracktor16
7. online method using public detections
33.4
54.4
±12.0
52.519.0% 36.9% 3,28079,149682 (12.1)1,480 (26.2)1.5Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
HDTR
8. using public detections
25.2
53.6
±8.7
46.621.2% 37.0% 4,71479,353618 (10.9)833 (14.7)3.6Public
TPM
9. using public detections
34.9
51.3
±9.3
47.918.7% 40.8% 2,70185,504569 (10.7)707 (13.3)0.8Public
Anonymous submission
UTA
10. online method using public detections
39.8
50.6
±7.9
50.418.3% 33.5% 7,75281,584722 (13.1)2,196 (39.7)5.0Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MOTPP16
11. using public detections
32.0
50.5
±9.7
47.219.6% 39.4% 5,93983,694638 (11.8)823 (15.2)3.0Public
Anonymous submission
PV
12. online method using public detections
44.3
50.4
±10.1
50.814.9% 38.9% 2,60086,7801,061 (20.2)3,181 (60.7)7.3Public
Anonymous submission
TTL16
13. online method using public detections new
42.2
50.4
±10.3
50.117.4% 39.9% 8,49181,156807 (14.5)1,251 (22.5)6.7Public
Anonymous submission
MOTHPCLEAN
14. using public detections
30.7
50.4
±9.4
47.019.1% 39.5% 5,33284,505657 (12.2)862 (16.1)11.8Public
Anonymous submission
CRF_TRACK
15. using public detections
30.0
50.3
±7.9
54.418.3% 35.7% 7,14882,746702 (12.9)1,387 (25.4)1.5Public
Anonymous submission
CRFTrack16
16. using public detections
30.7
50.3
±7.9
54.418.3% 35.7% 7,14882,746702 (12.9)1,387 (25.4)1.5Public
Anonymous submission
ENFT16
17. using public detections
27.9
50.3
±8.3
55.019.2% 39.8% 8,34181,843490 (8.9)754 (13.7)0.4Public
BUAA
MOT_FILTER
18. using public detections
34.2
50.2
±12.9
46.817.9% 39.7% 5,26784,812664 (12.4)978 (18.3)11.8Public
Anonymous submission
retrack
19. online method using public detections new
31.5
50.2
±13.5
52.118.4% 34.7% 6,32483,910615 (11.4)2,086 (38.6)22.3Public
Anonymous submission
TLO
20. online method using public detections new
43.5
50.1
±9.9
48.116.3% 40.7% 5,58284,629786 (14.7)1,294 (24.1)5.6Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MEN
21. online method using public detections
39.4
50.0
±9.1
52.815.0% 37.0% 6,11784,271706 (13.1)1,797 (33.4)2.0Public
Anonymous submission
SCNet
22. online method using public detections
49.8
50.0
±8.9
51.115.5% 34.1% 10,52679,755866 (15.4)2,141 (38.1)0.3Public
Anonymous submission
pairwise16
23. using public detections
30.3
50.0
±65.9
52.419.4% 38.7% 10,99579,568628 (11.1)939 (16.7)22.3Public
Anonymous submission
ENFT
24. using public detections
23.8
50.0
±8.2
54.617.8% 41.1% 8,21482,541479 (8.8)724 (13.2)22.3Public
Anonymous submission
RTT
25. online method using public detections
45.7
49.9
±8.0
49.319.0% 32.8% 9,92780,406955 (17.1)2,247 (40.2)1.8Public
Anonymous submission
MMHT16
26. online method using public detections
40.1
49.9
±9.8
47.316.2% 40.7% 6,11084,455823 (15.3)1,289 (24.0)12.4Public
Anonymous submission
OMHT16
27. online method using public detections
42.7
49.8
±9.9
46.716.1% 40.4% 6,24484,342888 (16.5)1,332 (24.8)12.4Public
Anonymous submission
CMT16
28. using public detections
26.5
49.8
±9.0
59.216.6% 43.6% 9,22981,882365 (6.6)617 (11.2)6.3Public
#Submission: TIP-21190-2019
NOTA
29. using public detections
31.2
49.8
±8.3
55.317.9% 37.7% 7,24883,614614 (11.3)1,372 (25.3)19.2Public
L. Chen, H. Ai, R. Chen, Z. Zhuang. Aggregate Tracklet Appearance Features for Multi-Object Tracking. In IEEE Signal Processing Letters, 2019.
TLO16
30. online method using public detections new
42.3
49.8
±10.0
47.816.6% 40.6% 6,08584,623782 (14.6)1,278 (23.8)12.4Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
siameseCos
31. using public detections
38.7
49.4
±8.4
49.819.1% 39.4% 6,28185,384679 (12.8)823 (15.5)0.8Public
In preparation
STCG
32. using public detections
34.5
49.3
±8.6
52.016.2% 41.4% 6,88684,979515 (9.6)775 (14.5)22.3Public
Anonymous submission
HCC
33. using public detections
31.0
49.3
±10.2
50.717.8% 39.9% 5,33386,795391 (7.5)535 (10.2)0.8Public
L. Ma, S. Tang, M. Black, L. Gool. Customized Multi-Person Tracker. In Computer Vision -- ACCV 2018, 2018.
LSST16O
34. online method using public detections
44.3
49.2
±10.2
56.513.4% 41.4% 7,18784,875606 (11.3)2,497 (46.7)2.0Public
Anonymous submission
eTC
35. using public detections
34.8
49.2
±9.1
56.117.3% 40.3% 8,40083,702606 (11.2)882 (16.3)0.7Public
G. Wang, Y. Wang, H. Zhang, R. Gu, J. Hwang. Exploit the connectivity: Multi-object tracking with trackletnet. In Proceedings of the 27th ACM International Conference on Multimedia, 2019.
MOTHP
36. using public detections
35.8
49.1
±9.1
46.920.0% 38.9% 9,03883,031679 (12.5)850 (15.6)11.8Public
Anonymous submission
AFN
37. using public detections
39.2
49.0
±10.2
48.219.1% 35.7% 9,50882,506899 (16.4)1,383 (25.3)0.6Public
H. Shen, L. Huang, C. Huang, W. Xu. Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. In CoRR, 2018.
CRF_RNN16
38. using public detections
32.3
49.0
±7.2
53.918.1% 35.8% 8,49583,838621 (11.5)1,252 (23.2)1.5Public
Anonymous submission
DAST
39. online method using public detections
38.5
48.9
±8.4
53.215.2% 36.2% 9,98782,427838 (15.3)1,936 (35.3)8.7Public
Anonymous submission
KCF16
40. online method using public detections
46.9
48.8
±9.6
47.215.8% 38.1% 5,87586,567906 (17.3)1,116 (21.2)0.1Public
P. Chu, H. Fan, C. Tan, H. Ling. Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment. In WACV, 2019.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
LMP
41. using public detections
35.4
48.8
±9.8
51.318.2% 40.1% 6,65486,245481 (9.1)595 (11.3)0.5Public
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
DeepMP16
42. using public detections
33.3
48.7
±10.3
50.115.0% 43.6% 4,11188,862535 (10.4)873 (17.0)9.9Public
Anonymous submission
TLMHT
43. using public detections
38.8
48.7
±8.6
55.315.7% 44.5% 6,63286,504413 (7.9)642 (12.2)4.8Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
STRN_MOT16
44. using public detections
43.5
48.5
±8.5
53.917.0% 34.9% 9,03884,178747 (13.9)2,919 (54.2)13.5Public
J. Xu, Y. Cao, Z. Zhang, H. Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. In ICCV, 2019.
MOTPPF
45. using public detections
35.0
48.4
±8.8
48.519.1% 39.8% 9,15284,266595 (11.1)802 (14.9)11.8Public
Anonymous submission
MOTPP
46. using public detections
39.5
48.3
±8.7
45.418.6% 40.1% 7,37886,181661 (12.5)834 (15.8)11.8Public
Anonymous submission
AOReid
47. online method using public detections
39.9
48.2
±8.7
50.815.3% 36.8% 10,28383,301821 (15.1)1,963 (36.1)11.2Public
Anonymous submission
GCRA
48. using public detections
44.5
48.2
±8.3
48.612.9% 41.1% 5,10488,586821 (16.0)1,117 (21.7)2.8Public
C. Ma, C. Yang, F. Yang, Y. Zhuang, Z. Zhang, H. Jia, X. Xie. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. In ICME, 2018.
SRPN16
49. online method using public detections
51.7
48.2
±8.5
51.314.2% 36.8% 7,76785,973790 (14.9)2,006 (38.0)1.4Public
Anonymous submission
FWT
50. using public detections
47.8
47.8
±9.4
44.319.1% 38.2% 8,88685,487852 (16.0)1,534 (28.9)0.6Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MOTDT
51. online method using public detections
45.1
47.6
±8.2
50.915.2% 38.3% 9,25385,431792 (14.9)1,858 (35.0)20.6Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
NLLMPa
52. using public detections
38.8
47.6
±10.6
47.317.0% 40.4% 5,84489,093629 (12.3)768 (15.0)8.3Public
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
EAGS16
53. using public detections
34.4
47.4
±10.4
50.117.3% 42.7% 8,36986,931575 (11.0)913 (17.5)197.3Public
H. Sheng, X. Zhang, Y. Zhang, Y. Wu, J. Chen. Enhanced Association with Supervoxels in Multiple Hypothesis Tracking. In IEEE Access, 2018.
JCSTD
54. online method using public detections
52.8
47.4
±8.3
41.114.4% 36.4% 8,07686,6381,266 (24.1)2,697 (51.4)8.8Public
W. Tian, M. Lauer, L. Chen. Online Multi-Object Tracking Using Joint Domain Information in Traffic Scenarios. In IEEE Transactions on Intelligent Transportation Systems, 2019.
ASTT
55. using public detections
41.0
47.2
±9.6
44.316.3% 41.6% 4,68090,877633 (12.6)814 (16.2)0.5Public
Yi Tao el al., “Adaptive Spatio-temporal Model Based Multiple Object Tracking Considering a Moving Camera[C]”, International Conference on Universal Village (UV), 2018.
eHAF16
56. using public detections
39.4
47.2
±16.8
52.418.6% 42.8% 12,58683,107542 (10.0)787 (14.5)0.5Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
AMIR
57. online method using public detections
47.1
47.2
±7.7
46.314.0% 41.6% 2,68192,856774 (15.8)1,675 (34.1)1.0Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
MCjoint
58. using public detections
38.3
47.1
±10.8
52.320.4% 46.9% 6,70389,368370 (7.3)598 (11.7)0.6Public
}@article{DBLP:journals/corr/KeuperTYABS16, author = {Margret Keuper and Siyu Tang and Zhongjie Yu and Bjoern Andres and Thomas Brox and Bernt Schiele}, title = {A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects}, journal = {CoRR}, volume = {abs/1607.06317}, year = {2016}, url = {http://arxiv.org/abs/1607.06317}, timestamp = {Wed, 07 Jun 2017 14:41:31 +0200}, biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/KeuperTYABS16}, bibsource = {dblp computer science bibliography, http://dblp.org} }
YOONKJ16
59. online method using public detections
48.8
47.0
±8.4
50.116.5% 41.8% 7,90188,179627 (12.1)945 (18.3)3.5Public
Anonymous submission
NOMT
60. using public detections
37.9
46.4
±9.9
53.318.3% 41.4% 9,75387,565359 (6.9)504 (9.7)2.6Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
JMC
61. using public detections
46.3
46.3
±9.0
46.315.5% 39.7% 6,37390,914657 (13.1)1,114 (22.2)0.8Public
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
DD_TAMA16
62. online method using public detections
40.7
46.2
±8.4
49.414.1% 44.0% 5,12692,367598 (12.1)1,127 (22.8)6.5Public
Y. Yoon, D. Kim, K. Yoon, Y. Song, M. Jeon. Online Multiple Pedestrian Tracking using Deep Temporal Appearance Matching Association. In arXiv:1907.00831, 2019.
DMAN
63. online method using public detections
44.5
46.1
±11.1
54.817.4% 42.7% 7,90989,874532 (10.5)1,616 (31.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
STAM16
64. online method using public detections
55.1
46.0
±9.1
50.014.6% 43.6% 6,89591,117473 (9.5)1,422 (28.4)0.2Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
deepS2
65. using public detections
44.1
46.0
±8.2
46.515.5% 42.6% 5,12492,697693 (14.1)759 (15.4)0.7Public
ID 32
RAR16pub
66. online method using public detections
56.5
45.9
±9.7
48.813.2% 41.9% 6,87191,173648 (13.0)1,992 (39.8)0.9Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
MHT_DAM
67. using public detections
47.1
45.8
±8.9
46.116.2% 43.2% 6,41291,758590 (11.9)781 (15.7)0.8Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
MTDF
68. online method using public detections
62.6
45.7
±11.2
40.114.1% 36.4% 12,01884,9701,987 (37.2)3,377 (63.2)1.5Public
Z. Fu, F. Angelini, J. Chambers, S. Naqvi. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. In IEEE Transactions on Multimedia, 2019.
INTERA_MOT
69. using public detections
42.3
45.4
±8.6
47.718.1% 38.7% 13,40785,547600 (11.3)930 (17.5)4.3Public
L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao, T. Huang. Interacting Tracklets for Multi-object Tracking. In IEEE Transactions on Image Processing, 2018.
EDMT
70. using public detections
45.3
45.3
±9.1
47.917.0% 39.9% 11,12287,890639 (12.3)946 (18.3)1.8Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
DCCRF16
71. online method using public detections
56.6
44.8
±9.8
39.714.1% 42.3% 5,61394,133968 (20.0)1,378 (28.5)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
TBSS
72. online method using public detections
59.0
44.6
±9.3
42.612.3% 43.9% 4,13696,128790 (16.7)1,419 (30.0)3.0Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
QuadMOT16
73. using public detections
57.8
44.1
±9.4
38.314.6% 44.9% 6,38894,775745 (15.5)1,096 (22.8)1.8Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
SRPN
74. online method using public detections
60.8
44.0
±10.7
36.615.5% 45.7% 18,78482,3181,047 (19.1)1,118 (20.4)3.9Public
Anonymous submission
CDA_DDALv2
75. online method using public detections
56.3
43.9
±7.8
45.110.7% 44.4% 6,45095,175676 (14.1)1,795 (37.6)0.5Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
LFNF16
76. using public detections
59.3
43.6
±11.0
41.613.3% 45.7% 6,61695,363836 (17.5)938 (19.7)0.6Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
oICF
77. online method using public detections
57.0
43.2
±10.2
49.311.3% 48.5% 6,65196,515381 (8.1)1,404 (29.8)0.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
AEb
78. using public detections new
37.9
42.9
±11.0
48.715.3% 49.0% 4,48799,310375 (8.2)1,334 (29.3)22.3Public
Anonymous submission
MHT_bLSTM6
79. using public detections
58.4
42.1
±9.7
47.814.9% 44.4% 11,63793,172753 (15.4)1,156 (23.6)1.8Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
TestUnsup
80. online method using public detections
55.7
41.5
±9.0
44.913.7% 43.5% 12,59693,404643 (13.2)796 (16.3)19.7Public
Multi Object Tracking using Deep Structural Cost Minimization in Data Association
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
OST16
81. online method using public detections
63.2
41.5
±9.2
39.110.7% 45.6% 5,91999,7091,056 (23.3)1,487 (32.8)4.7Public
Anonymous submission
LINF1
82. using public detections
54.3
41.0
±9.5
45.711.6% 51.3% 7,89699,224430 (9.4)963 (21.1)4.2Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
PHD_GSDL16
83. online method using public detections
64.4
41.0
±8.9
43.111.3% 41.5% 6,49899,2571,810 (39.7)3,650 (80.1)8.3Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
PHD_T
84. online method using public detections
60.7
40.3
±9.0
48.311.6% 43.1% 7,147100,895815 (18.2)2,446 (54.8)9.9Public
Anonymous submission
PMPTracker
85. online method using public detections
65.8
40.3
±11.7
38.210.4% 42.0% 10,07197,5241,343 (28.9)2,764 (59.4)148.0Public
Light version of PTZ camera Mutiple People Tracker
AM_ADM
86. online method using public detections
59.9
40.1
±10.1
43.87.1% 46.2% 8,50399,891789 (17.5)1,736 (38.4)5.8Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
D_cost16
87. online method using public detections
52.1
39.9
±9.1
35.38.7% 50.2% 1,133107,586790 (19.3)824 (20.1)8.5Public
Anonymous submission
SDMT
88. online method using public detections
56.8
39.6
±8.3
42.311.7% 49.1% 11,13098,343602 (13.1)772 (16.8)19.8Public
M. Thoreau, N. Kottege. Deep Similarity Metric Learning for Real-Time Pedestrian Tracking. In arXiv, 2018.
EAMTT_pub
89. online method using public detections
62.0
38.8
±8.5
42.47.9% 49.1% 8,114102,452965 (22.0)1,657 (37.8)11.8Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
OVBT
90. online method using public detections
77.6
38.4
±8.8
37.87.5% 47.3% 11,51799,4631,321 (29.1)2,140 (47.1)0.3Public
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
HAM_ACT16
91. online method using public detections
52.6
38.1
±8.2
43.37.8% 54.4% 6,976105,434418 (9.9)707 (16.8)8.0Public
GMMCP
92. using public detections
67.8
38.1
±7.8
35.58.6% 50.9% 6,607105,315937 (22.2)1,669 (39.5)0.5Public
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
LTTSC-CRF
93. using public detections
64.7
37.6
±9.9
42.19.6% 55.2% 11,969101,343481 (10.8)1,012 (22.8)0.6Public
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
GoturnM16
94. online method using public detections
72.9
37.5
±7.5
25.18.4% 46.5% 17,74692,8673,277 (66.8)2,994 (61.0)3.9Public
Anonymous submission
HISP_DAL
95. online method using public detections
67.3
37.4
±8.8
30.57.6% 50.9% 3,222108,8652,101 (52.1)2,151 (53.4)3.3Public
N. Baisa. Robust Online Multi-target Visual Tracking using a HISP Filter with Discriminative Deep Appearance Learning. In CoRR, 2019.
JCmin_MOT
96. online method using public detections
54.3
36.7
±9.1
36.27.5% 54.4% 2,936111,890667 (17.3)831 (21.5)14.8Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
HISP_T
97. online method using public detections
69.6
35.9
±8.5
28.97.8% 50.1% 6,412107,9182,594 (63.6)2,298 (56.3)4.8Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
LP2D
98. using public detections
58.7
35.7
±10.1
34.28.7% 50.7% 5,084111,163915 (23.4)1,264 (32.4)49.3Public
MOT baseline: Linear programming on 2D image coordinates.
GM_PHD_DAL
99. online method using public detections
69.7
35.1
±9.1
26.67.0% 51.4% 2,350111,8864,047 (104.8)5,338 (138.2)3.5Public
N. Baisa. Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning. In 22nd International Conference on Information Fusion, 2019.
GM_PHD_Dl
100. online method using public detections
70.7
34.3
±9.1
20.57.1% 51.5% 2,350111,8865,605 (145.1)5,357 (138.7)3.5Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
RNN_A_P
101. online method using public detections
74.6
34.0
±8.6
33.77.9% 51.0% 8,562109,2692,479 (61.9)3,393 (84.7)19.7Public
Anonymous submission
GM_PHD_e17
102. online method using public detections
71.2
33.8
±8.9
25.36.3% 54.9% 1,766115,1303,778 (102.5)3,874 (105.1)3.3Public
Anonymous submission
TBD
103. using public detections
78.5
33.7
±9.2
0.07.2% 54.2% 5,804112,5872,418 (63.2)2,252 (58.9)1.3Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
KVIOU16
104. using public detections
60.7
33.4
±9.7
32.65.9% 59.6% 2,764117,971760 (21.5)1,473 (41.7)29.6Public
Anonymous submission
GM_PHD_N1T
105. online method using public detections
69.0
33.3
±8.9
25.55.5% 56.0% 1,750116,4523,499 (96.8)3,594 (99.5)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019.
CEM
106. using public detections
62.3
33.2
±7.9
0.07.8% 54.4% 6,837114,322642 (17.2)731 (19.6)0.3Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
CppSORT
107. online method using public detections
63.1
31.5
±9.0
27.74.3% 59.9% 3,048120,2781,587 (46.6)2,239 (65.8)687.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
GMPHD_HDA
108. online method using public detections
54.7
30.5
±6.9
33.44.6% 59.7% 5,169120,970539 (16.0)731 (21.7)13.6Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
SMOT
109. using public detections
87.3
29.7
±7.3
0.05.3% 47.7% 17,426107,5523,108 (75.8)4,483 (109.3)0.2Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
DCOR
110. online method using public detections
63.2
28.3
±9.0
21.73.4% 63.9% 1,618128,345849 (28.7)2,592 (87.5)32.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MHT_ReID
111. using public detections
61.3
27.1
±47.2
36.430.6% 31.4% 13,068118,8291,071 (30.8)1,141 (32.8)0.5Public
Anonymous submission
JPDA_m
112. using public detections
54.6
26.2
±6.1
0.04.1% 67.5% 3,689130,549365 (12.9)638 (22.5)22.2Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
DP_NMS
113. using public detections
53.9
26.2
±9.3
31.24.1% 67.5% 3,689130,557365 (12.9)638 (22.5)5.9Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
test_trker
114. using public detections
57.7
0.0
±0.0
0.00.0% 100.0% 7182,3260 (nan)0 (nan)22.3Public
Anonymous submission

Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(52.7% MOTA)

MOT16-06

MOT16-06

(45.5% MOTA)

MOT16-07

MOT16-07

(39.7% MOTA)

...

...

MOT16-08

MOT16-08

(30.4% MOTA)

MOT16-14

MOT16-14

(25.4% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.