MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
DP_NMS
1. using public detections
32.0
26.2
±9.3
31.24.1% 67.5% 3,689130,557365 (12.9)638 (22.5)5.9Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
JPDA_m
2. using public detections
33.1
26.2
±6.1
0.04.1% 67.5% 3,689130,549365 (12.9)638 (22.5)22.2Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
SMOT
3. using public detections
53.1
29.7
±7.3
0.05.3% 47.7% 17,426107,5523,108 (75.8)4,483 (109.3)0.2Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
CMRZF
4. using public detections
35.2
30.4
±10.8
29.42.9% 70.5% 1,421124,4831,030 (32.5)733 (23.1)16.9Public
GMPHD_HDA
5. online method using public detections
33.3
30.5
±6.9
33.44.6% 59.7% 5,169120,970539 (16.0)731 (21.7)13.6Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
CppSORT
6. online method using public detections
39.3
31.5
±9.0
27.74.3% 59.9% 3,048120,2781,587 (46.6)2,239 (65.8)687.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
DWET
7. online method using public detections
35.7
32.2
±10.4
38.36.2% 63.0% 7,297115,780603 (16.5)1,184 (32.4)11.3Public
Anonymous submission
CEM
8. using public detections
37.4
33.2
±7.9
0.07.8% 54.4% 6,837114,322642 (17.2)731 (19.6)0.3Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
GM_PHD_N1T
9. online method using public detections
41.4
33.3
±8.9
25.55.5% 56.0% 1,750116,4523,499 (96.8)3,594 (99.5)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD Filter for Multiple Target, Multiple Type Visual Tracking. In CoRR, 2017.
TBD
10. using public detections
46.7
33.7
±9.2
0.07.2% 54.2% 5,804112,5872,418 (63.2)2,252 (58.9)1.3Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
ARM16
11. using public detections
33.9
35.3
±7.7
40.312.8% 38.5% 23,52092,1712,334 (47.2)3,516 (71.1)5.9Public
Anonymous submission
LP2D
12. using public detections
35.5
35.7
±10.1
34.28.7% 50.7% 5,084111,163915 (23.4)1,264 (32.4)49.3Public
MOT baseline: Linear programming on 2D image coordinates.
HISP_T
13. online method using public detections
41.8
35.9
±8.5
28.97.8% 50.1% 6,412107,9182,594 (63.6)2,298 (56.3)4.8Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
JCmin_MOT
14. online method using public detections
32.3
36.7
±9.1
36.27.5% 54.4% 2,936111,890667 (17.3)831 (21.5)14.8Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
HAM_ACT16
15. online method using public detections new
30.1
37.0
±8.3
42.87.9% 56.5% 5,363109,065394 (9.8)819 (20.4)5.8Public
Anonymous submission
LTTSC-CRF
16. using public detections
37.0
37.6
±9.9
42.19.6% 55.2% 11,969101,343481 (10.8)1,012 (22.8)0.6Public
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
Q_lc
17. online method using public detections
34.0
37.9
±10.3
48.314.2% 37.9% 19,33393,157697 (14.3)1,918 (39.2)0.3Public
Anonymous submission
GMMCP
18. using public detections
39.8
38.1
±7.8
35.58.6% 50.9% 6,607105,315937 (22.2)1,669 (39.5)0.5Public
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
OVBT
19. online method using public detections
46.4
38.4
±8.8
37.87.5% 47.3% 11,51799,4631,321 (29.1)2,140 (47.1)0.3Public
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
EAMTT_pub
20. online method using public detections
35.8
38.8
±8.5
42.47.9% 49.1% 8,114102,452965 (22.0)1,657 (37.8)11.8Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
SDMT
21. online method using public detections
32.9
39.6
±8.3
42.311.7% 49.1% 11,13098,343602 (13.1)772 (16.8)19.8Public
Anonymous submission
STFP
22. online method using public detections
38.7
39.8
±8.9
47.413.0% 41.4% 12,11896,755950 (20.2)2,630 (56.0)0.4Public
Anonymous submission
ReIDT
23. online method using public detections
33.9
40.0
±10.3
43.313.6% 38.1% 17,08891,2411,064 (21.3)2,274 (45.5)6.5Public
Anonymous submission
FullTest
24. online method using public detections
32.8
40.7
±32.6
44.811.6% 42.3% 14,35492,6501,136 (23.1)3,864 (78.6)236.8Public
Anonymous submission
PRT
25. online method using public detections
33.3
40.8
±13.0
44.213.7% 38.3% 15,14391,7921,051 (21.2)2,210 (44.5)6.2Public
Anonymous submission
VOFNet
26. online method using public detections
34.6
40.9
±8.3
46.79.7% 47.0% 4,750102,277684 (15.6)4,310 (98.2)24.9Public
Anonymous submission
LINF1
27. using public detections
29.8
41.0
±9.5
45.711.6% 51.3% 7,89699,224430 (9.4)963 (21.1)4.2Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
OVMOT
28. online method using public detections
32.6
41.9
±8.8
50.115.0% 43.0% 10,71294,510626 (13.0)2,008 (41.7)0.4Public
Anonymous submission
TBNMF16
29. online method using public detections
36.7
42.0
±9.2
37.510.4% 44.9% 4,96699,7781,085 (24.0)1,400 (30.9)4.5Public
Anonymous submission
TTAR
30. using public detections
34.3
42.2
±8.0
37.210.4% 47.8% 4,87299,550909 (20.0)945 (20.8)19.7Public
Anonymous submission
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
DeepS
31. using public detections new
28.9
43.0
±7.8
40.115.3% 41.8% 9,80893,287876 (17.9)865 (17.7)0.5Public
MMSP 2018
EMOT
32. online method using public detections
30.3
43.0
±8.8
49.213.8% 42.7% 9,52193,672712 (14.6)1,903 (39.1)0.4Public
Anonymous submission
PRMOT
33. using public detections
34.1
43.1
±9.3
44.814.5% 41.8% 10,49592,1741,145 (23.2)1,999 (40.4)0.6Public
Anonymous submission
oICF
34. online method using public detections
30.6
43.2
±10.2
49.311.3% 48.5% 6,65196,515381 (8.1)1,404 (29.8)0.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
HSFSC
35. online method using public detections
30.8
43.3
±9.1
41.612.0% 43.9% 5,55896,996874 (18.7)1,482 (31.7)3.0Public
Anonymous submission
RMFP
36. online method using public detections
32.7
43.4
±9.2
50.414.9% 44.0% 7,55995,015682 (14.2)1,999 (41.7)0.3Public
Anonymous submission
SAD_T
37. online method using public detections
34.3
43.4
±16.2
44.011.7% 59.3% 15,34187,086763 (14.6)1,832 (35.1)11.4Public
Anonymous submission
LFNF16
38. using public detections
30.8
43.6
±11.0
41.613.3% 45.7% 6,61695,363836 (17.5)938 (19.7)0.6Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
STbase
39. using public detections
30.1
43.7
±9.2
50.815.2% 43.0% 8,89193,036662 (13.5)1,844 (37.7)0.4Public
Anonymous submission
overMOT
40. online method using public detections
29.7
43.7
±9.3
50.815.2% 43.0% 8,89193,036662 (13.5)1,844 (37.7)0.4Public
Anonymous submission
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
PSMT
41. using public detections
32.8
43.9
±9.3
50.715.4% 42.8% 9,10992,271944 (19.1)2,036 (41.2)0.3Public
Anonymous submission
CDA_DDALv2
42. online method using public detections
29.7
43.9
±7.8
45.110.7% 44.4% 6,45095,175676 (14.1)1,795 (37.6)0.5Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
QuadMOT16
43. using public detections
29.7
44.1
±9.4
38.314.6% 44.9% 6,38894,775745 (15.5)1,096 (22.8)1.8Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
TripT
44. online method using public detections
28.4
44.3
±8.1
45.812.5% 46.5% 2,79798,332469 (10.2)1,134 (24.6)0.6Public
Anonymous submission
TripletT
45. online method using public detections
28.8
44.6
±9.7
48.812.6% 46.6% 2,72597,948422 (9.1)1,093 (23.6)0.1Public
Anonymous submission
TBSS
46. online method using public detections
30.5
44.6
±9.3
42.612.3% 43.9% 4,13696,128790 (16.7)1,419 (30.0)3.0Public
Anonymous submission
SAC
47. online method using public detections
30.2
44.6
±9.2
42.712.1% 43.6% 3,92996,285795 (16.8)1,414 (30.0)1.1Public
Anonymous submission
DCCRF16
48. online method using public detections
29.3
44.8
±9.8
39.714.1% 42.3% 5,61394,133968 (20.0)1,378 (28.5)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, and H. Li, Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking, IEEE Transactions on Circuits and Systems for Video Technology.
ONEEC
49. online method using public detections
23.9
45.3
±9.5
53.716.3% 42.4% 8,42390,821550 (11.0)1,574 (31.4)0.3Public
Anonymous submission
EDMT
50. using public detections
18.8
45.3
±9.1
47.917.0% 39.9% 11,12287,890639 (12.3)946 (18.3)1.8Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
STMOT
51. using public detections
25.8
45.4
±9.2
53.316.3% 42.8% 8,07190,883561 (11.2)1,548 (30.9)0.3Public
Anonymous submission
MHT_DAM
52. using public detections
21.3
45.8
±8.9
46.116.2% 43.2% 6,41291,758590 (11.9)781 (15.7)0.8Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
ASSMOT
53. using public detections
19.6
46.0
±9.3
54.416.6% 42.7% 8,04589,959538 (10.6)1,623 (32.0)0.4Public
Anonymous submission
STAM16
54. online method using public detections
27.2
46.0
±9.1
50.014.6% 43.6% 6,89591,117473 (9.5)1,422 (28.4)0.2Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
DMMOT
55. online method using public detections
18.5
46.1
±11.1
54.817.4% 42.7% 7,90989,874532 (10.5)1,616 (31.9)0.5Public
Anonymous submission
JMC
56. using public detections
19.7
46.3
±9.0
46.315.5% 39.7% 6,37390,914657 (13.1)1,114 (22.2)0.8Public
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
NOMT
57. using public detections
14.7
46.4
±9.9
53.318.3% 41.4% 9,75387,565359 (6.9)504 (9.7)2.6Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
IMWIS
58. using public detections
21.3
47.0
±9.3
41.816.2% 41.4% 4,84290,901868 (17.3)904 (18.0)0.7Public
Anonymous submission
MCjoint
59. using public detections
16.8
47.1
±10.8
52.320.4% 46.9% 6,70389,368370 (7.3)598 (11.7)0.6Public
M. Keuper, S. Tang, Z. Yu, B. Andres, T. Brox, B. Schiele. A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects. In CoRR, 2016.
AMIR
60. online method using public detections
20.5
47.2
±7.7
46.314.0% 41.6% 2,68192,856774 (15.8)1,675 (34.1)1.0Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
eHAF16
61. using public detections
17.7
47.2
±16.8
52.418.6% 42.8% 12,58683,107542 (10.0)787 (14.5)0.5Public
Anonymous submission
Adaptation
62. using public detections
12.9
47.6
±10.6
47.417.0% 40.4% 5,78389,168627 (12.3)761 (14.9)2.5Public
Anonymous submission
NLLMPa
63. using public detections
15.2
47.6
±10.6
47.317.0% 40.4% 5,84489,093629 (12.3)768 (15.0)8.3Public
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
MOTDT
64. online method using public detections
19.9
47.6
±8.2
50.915.2% 38.3% 9,25385,431792 (14.9)1,858 (35.0)20.6Public
Anonymous ICME submission
FWT
65. using public detections
20.8
47.8
±9.4
44.319.1% 38.2% 8,88685,487852 (16.0)1,534 (28.9)0.6Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. A Novel Multi-Detector Fusion Framework for Multi-Object Tracking. In arXiv preprint arXiv:1705.08314, 2017.
GCRA
66. using public detections
18.6
48.2
±8.3
48.612.9% 41.1% 5,10488,586821 (16.0)1,117 (21.7)2.8Public
C.Ma, C.Yang, F.Yang, Y.Zhuang, Z.Zhang, H.Jia, D.Xie. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. In ICME 2018.
LMP
67. using public detections
14.0
48.8
±9.8
51.318.2% 40.1% 6,65486,245481 (9.1)595 (11.3)0.5Public
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
KCF16
68. online method using public detections
21.8
48.8
±9.6
47.215.8% 38.1% 5,87586,567906 (17.3)1,116 (21.2)0.1Public
Paper ID 2988
AFN
69. using public detections
17.5
49.0
±10.2
48.219.1% 35.7% 9,50882,506899 (16.4)1,383 (25.3)0.6Public
Anonymous submission
TPM
70. using public detections
20.1
49.1
±9.1
46.920.0% 38.9% 9,03883,031679 (12.5)850 (15.6)0.8Public
Anonymous submission

Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(51.4% MOTA)

MOT16-06

MOT16-06

(43.8% MOTA)

MOT16-12

MOT16-12

(37.9% MOTA)

...

...

MOT16-08

MOT16-08

(29.5% MOTA)

MOT16-14

MOT16-14

(23.9% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.