MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
NOMT
1. using public detections
25.3
46.4
±9.9
53.318.3% 41.4% 9,75387,565359 (6.9)504 (9.7)2.6Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
HCC
2. using public detections
20.9
49.3
±10.2
50.717.8% 39.9% 5,33386,795391 (7.5)535 (10.2)0.8Public
L. Ma, S. Tang, M. Black, L. Gool. Customized Multi-Person Tracker. In Computer Vision -- ACCV 2018, 2018.
LMP
3. using public detections
24.5
48.8
±9.8
51.318.2% 40.1% 6,65486,245481 (9.1)595 (11.3)0.5Public
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
MCjoint
4. using public detections
27.0
47.1
±10.8
52.320.4% 46.9% 6,70389,368370 (7.3)598 (11.7)0.6Public
}@article{DBLP:journals/corr/KeuperTYABS16, author = {Margret Keuper and Siyu Tang and Zhongjie Yu and Bjoern Andres and Thomas Brox and Bernt Schiele}, title = {A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects}, journal = {CoRR}, volume = {abs/1607.06317}, year = {2016}, url = {http://arxiv.org/abs/1607.06317}, timestamp = {Wed, 07 Jun 2017 14:41:31 +0200}, biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/KeuperTYABS16}, bibsource = {dblp computer science bibliography, http://dblp.org} }
CMT16
5. using public detections
17.0
49.8
±9.0
59.216.6% 43.6% 9,22981,882365 (6.6)617 (11.2)6.3Public
#Submission: TCSVT-02964-2019
DP_NMS
6. using public detections
39.1
26.2
±9.3
31.24.1% 67.5% 3,689130,557365 (12.9)638 (22.5)5.9Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
JPDA_m
7. using public detections
40.5
26.2
±6.1
0.04.1% 67.5% 3,689130,549365 (12.9)638 (22.5)22.2Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
TLMHT
8. using public detections
26.2
48.7
±8.6
55.315.7% 44.5% 6,63286,504413 (7.9)642 (12.2)4.8Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
TPM
9. using public detections
23.7
51.3
±9.3
47.918.7% 40.8% 2,70185,504569 (10.7)707 (13.3)0.8Public
Anonymous submission
HAM_ACT16
10. online method using public detections
37.7
38.1
±8.2
43.37.8% 54.4% 6,976105,434418 (9.9)707 (16.8)8.0Public
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
CEM
11. using public detections
45.4
33.2
±7.9
0.07.8% 54.4% 6,837114,322642 (17.2)731 (19.6)0.3Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
GMPHD_HDA
12. online method using public detections
40.3
30.5
±6.9
33.44.6% 59.7% 5,169120,970539 (16.0)731 (21.7)13.6Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
deepS2
13. using public detections
30.3
46.0
±8.2
46.515.5% 42.6% 5,12492,697693 (14.1)759 (15.4)0.7Public
ID 32
NLLMPa
14. using public detections
26.5
47.6
±10.6
47.317.0% 40.4% 5,84489,093629 (12.3)768 (15.0)8.3Public
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
STCG
15. using public detections
23.1
49.3
±8.6
52.016.2% 41.4% 6,88684,979515 (9.6)775 (14.5)22.3Public
Anonymous submission
MHT_DAM
16. using public detections
33.1
45.8
±8.9
46.116.2% 43.2% 6,41291,758590 (11.9)781 (15.7)0.8Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
eHAF16
17. using public detections
27.8
47.2
±16.8
52.418.6% 42.8% 12,58683,107542 (10.0)787 (14.5)0.5Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
ASTT
18. using public detections
27.8
47.2
±9.6
44.316.3% 41.6% 4,68090,877633 (12.6)814 (16.2)0.5Public
Yi Tao el al., “Adaptive Spatio-temporal Model Based Multiple Object Tracking Considering a Moving Camera[C]”, International Conference on Universal Village (UV), 2018.
siameseCos
19. using public detections
26.2
49.4
±8.4
49.819.1% 39.4% 6,28185,384679 (12.8)823 (15.5)0.8Public
In preparation
D_cost16
20. online method using public detections
36.4
39.9
±9.1
35.38.7% 50.2% 1,133107,586790 (19.3)824 (20.1)8.5Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
JCmin_MOT
21. online method using public detections
39.3
36.7
±9.1
36.27.5% 54.4% 2,936111,890667 (17.3)831 (21.5)14.8Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
HDTR
22. using public detections
17.3
53.6
±8.7
46.621.2% 37.0% 4,71479,353618 (10.9)833 (14.7)3.6Public
DeepMP16
23. using public detections
21.8
48.7
±10.3
50.115.0% 43.6% 4,11188,862535 (10.4)873 (17.0)9.9Public
Anonymous submission
eTC
24. using public detections
24.1
49.2
±9.1
56.117.3% 40.3% 8,40083,702606 (11.2)882 (16.3)0.7Public
G. Wang, Y. Wang, H. Zhang, R. Gu, J. Hwang. Exploit the Connectivity: Multi-Object Tracking with TrackletNet. In arXiv preprint arXiv:1811.07258, 2018.
EAGS16
25. using public detections
23.9
47.4
±10.4
50.117.3% 42.7% 8,36986,931575 (11.0)913 (17.5)197.3Public
H. Sheng, X. Zhang, Y. Zhang, Y. Wu, J. Chen. Enhanced Association with Supervoxels in Multiple Hypothesis Tracking. In IEEE Access, 2018.
INTERA_MOT
26. using public detections
29.7
45.4
±8.6
47.718.1% 38.7% 13,40785,547600 (11.3)930 (17.5)4.3Public
L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao, T. Huang. Interacting Tracklets for Multi-object Tracking. In IEEE Transactions on Image Processing, 2018.
ENFT16
27. using public detections new
24.9
49.6
±8.4
52.019.1% 39.3% 10,64980,617628 (11.3)937 (16.8)0.4Public
BUAA
LFNF16
28. using public detections
42.1
43.6
±11.0
41.613.3% 45.7% 6,61695,363836 (17.5)938 (19.7)0.6Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
EDMT
29. using public detections
31.7
45.3
±9.1
47.917.0% 39.9% 11,12287,890639 (12.3)946 (18.3)1.8Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
LINF1
30. using public detections
38.7
41.0
±9.5
45.711.6% 51.3% 7,89699,224430 (9.4)963 (21.1)4.2Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
LTTSC-CRF
31. using public detections
46.8
37.6
±9.9
42.19.6% 55.2% 11,969101,343481 (10.8)1,012 (22.8)0.6Public
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
QuadMOT16
32. using public detections
40.4
44.1
±9.4
38.314.6% 44.9% 6,38894,775745 (15.5)1,096 (22.8)1.8Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
JMC
33. using public detections
32.1
46.3
±9.0
46.315.5% 39.7% 6,37390,914657 (13.1)1,114 (22.2)0.8Public
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
KCF16
34. online method using public detections
32.7
48.8
±9.6
47.215.8% 38.1% 5,87586,567906 (17.3)1,116 (21.2)0.1Public
P. Chu, H. Fan, C. Tan, H. Ling. Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment. In WACV, 2019.
GCRA
35. using public detections
30.0
48.2
±8.3
48.612.9% 41.1% 5,10488,586821 (16.0)1,117 (21.7)2.8Public
C. Ma, C. Yang, F. Yang, Y. Zhuang, Z. Zhang, H. Jia, X. Xie. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. In ICME, 2018.
DD_TAMA16
36. online method using public detections
28.1
46.2
±8.4
49.414.1% 44.0% 5,12692,367598 (12.1)1,127 (22.8)6.5Public
Young-Chul Yoon, Online Multiple Pedestrian Tracking with Deep Temporal Appearance Matching Association, For Journal submission
MHT_ReID
37. using public detections
45.0
27.1
±47.2
36.430.6% 31.4% 13,068118,8291,071 (30.8)1,141 (32.8)0.5Public
Anonymous submission
MHT_bLSTM6
38. using public detections
41.5
42.1
±9.7
47.814.9% 44.4% 11,63793,172753 (15.4)1,156 (23.6)1.8Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
CRF_RNN16
39. using public detections
21.9
49.0
±7.2
53.918.1% 35.8% 8,49583,838621 (11.5)1,252 (23.2)1.5Public
Anonymous submission
LP2D
40. using public detections
42.5
35.7
±10.1
34.28.7% 50.7% 5,084111,163915 (23.4)1,264 (32.4)49.3Public
MOT baseline: Linear programming on 2D image coordinates.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
NOTA
41. using public detections
21.8
49.8
±8.3
55.317.9% 37.7% 7,24883,614614 (11.3)1,372 (25.3)19.2Public
BMVC 2019 Submition 298
DCCRF16
42. online method using public detections
39.5
44.8
±9.8
39.714.1% 42.3% 5,61394,133968 (20.0)1,378 (28.5)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
AFN
43. using public detections
26.2
49.0
±10.2
48.219.1% 35.7% 9,50882,506899 (16.4)1,383 (25.3)0.6Public
H. Shen, L. Huang, C. Huang, W. Xu. Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. In CoRR, 2018.
CRF_TRACK
44. using public detections
20.1
50.3
±7.9
54.418.3% 35.7% 7,14882,746702 (12.9)1,387 (25.4)1.5Public
Anonymous submission
CRFTrack16
45. using public detections new
20.8
50.3
±7.9
54.418.3% 35.7% 7,14882,746702 (12.9)1,387 (25.4)1.5Public
Anonymous submission
oICF
46. online method using public detections
40.9
43.2
±10.2
49.311.3% 48.5% 6,65196,515381 (8.1)1,404 (29.8)0.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
TBSS
47. online method using public detections
41.1
44.6
±9.3
42.612.3% 43.9% 4,13696,128790 (16.7)1,419 (30.0)3.0Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
STAM16
48. online method using public detections
38.9
46.0
±9.1
50.014.6% 43.6% 6,89591,117473 (9.5)1,422 (28.4)0.2Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
OST16
49. online method using public detections
44.5
41.5
±9.2
39.110.7% 45.6% 5,91999,7091,056 (23.3)1,487 (32.8)4.7Public
Anonymous submission
FWT
50. using public detections
32.6
47.8
±9.4
44.319.1% 38.2% 8,88685,487852 (16.0)1,534 (28.9)0.6Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
DMAN
51. online method using public detections
31.2
46.1
±11.1
54.817.4% 42.7% 7,90989,874532 (10.5)1,616 (31.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
EAMTT_pub
52. online method using public detections
43.4
38.8
±8.5
42.47.9% 49.1% 8,114102,452965 (22.0)1,657 (37.8)11.8Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
GMMCP
53. using public detections
48.3
38.1
±7.8
35.58.6% 50.9% 6,607105,315937 (22.2)1,669 (39.5)0.5Public
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
AMIR
54. online method using public detections
31.7
47.2
±7.7
46.314.0% 41.6% 2,68192,856774 (15.8)1,675 (34.1)1.0Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
AM_ADM
55. online method using public detections
41.7
40.1
±10.1
43.87.1% 46.2% 8,50399,891789 (17.5)1,736 (38.4)5.8Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
CDA_DDALv2
56. online method using public detections
39.3
43.9
±7.8
45.110.7% 44.4% 6,45095,175676 (14.1)1,795 (37.6)0.5Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
MEN
57. online method using public detections
26.8
50.0
±9.1
52.815.0% 37.0% 6,11784,271706 (13.1)1,797 (33.4)2.0Public
Anonymous submission
MOTDT
58. online method using public detections
31.0
47.6
±8.2
50.915.2% 38.3% 9,25385,431792 (14.9)1,858 (35.0)20.6Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
DAST
59. online method using public detections
25.4
48.9
±8.4
53.215.2% 36.2% 9,98782,427838 (15.3)1,936 (35.3)8.7Public
Anonymous submission
AOReid
60. online method using public detections
26.3
48.2
±8.7
50.815.3% 36.8% 10,28383,301821 (15.1)1,963 (36.1)11.2Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
RAR16pub
61. online method using public detections
39.9
45.9
±9.7
48.813.2% 41.9% 6,87191,173648 (13.0)1,992 (39.8)0.9Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
SRPN16
62. online method using public detections
35.5
48.2
±8.5
51.314.2% 36.8% 7,76785,973790 (14.9)2,006 (38.0)1.4Public
Anonymous submission
OVBT
63. online method using public detections
55.8
38.4
±8.8
37.87.5% 47.3% 11,51799,4631,321 (29.1)2,140 (47.1)0.3Public
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
UTA
64. online method using public detections new
27.4
50.6
±7.9
50.418.3% 33.5% 7,75281,584722 (13.1)2,196 (39.7)5.0Public
Anonymous submission
CppSORT
65. online method using public detections
45.8
31.5
±9.0
27.74.3% 59.9% 3,048120,2781,587 (46.6)2,239 (65.8)687.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
RTT
66. online method using public detections
31.4
49.9
±8.0
49.319.0% 32.8% 9,92780,406955 (17.1)2,247 (40.2)1.8Public
Anonymous submission
TBD
67. using public detections
56.4
33.7
±9.2
0.07.2% 54.2% 5,804112,5872,418 (63.2)2,252 (58.9)1.3Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
HISP_T
68. online method using public detections
49.4
35.9
±8.5
28.97.8% 50.1% 6,412107,9182,594 (63.6)2,298 (56.3)4.8Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
LSST16O
69. online method using public detections
30.2
49.2
±10.2
56.513.4% 41.4% 7,18784,875606 (11.3)2,497 (46.7)2.0Public
Anonymous submission
DCOR
70. online method using public detections
46.0
28.3
±9.0
21.73.4% 63.9% 1,618128,345849 (28.7)2,592 (87.5)32.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
JCSTD
71. online method using public detections
36.3
47.4
±8.3
41.114.4% 36.4% 8,07686,6381,266 (24.1)2,697 (51.4)8.8Public
W. Tian, M. Lauer, L. Chen. Online Multi-Object Tracking Using Joint Domain Information in Traffic Scenarios. In IEEE Transactions on Intelligent Transportation Systems, 2019.
DS_v2
72. using public detections
18.0
59.3
±12.9
57.524.2% 29.1% 7,46565,810887 (13.9)2,738 (42.8)39.4Public
Anonymous submission
PMPTracker
73. online method using public detections
47.1
40.3
±11.7
38.210.4% 42.0% 10,07197,5241,343 (28.9)2,764 (59.4)148.0Public
Light version of PTZ camera Mutiple People Tracker
PV
74. online method using public detections
30.3
50.4
±10.1
50.814.9% 38.9% 2,60086,7801,061 (20.2)3,181 (60.7)7.3Public
Anonymous submission
MTDF
75. online method using public detections
43.6
45.7
±11.2
40.114.1% 36.4% 12,01884,9701,987 (37.2)3,377 (63.2)1.5Public
Z. Fu, F. Angelini, J. Chambers, S. Naqvi. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. In IEEE Transactions on Multimedia, 2019.
RNN_A_P
76. online method using public detections
53.7
34.0
±8.6
33.77.9% 51.0% 8,562109,2692,479 (61.9)3,393 (84.7)19.7Public
Anonymous submission
GM_PHD_N1T
77. online method using public detections
49.6
33.3
±8.9
25.55.5% 56.0% 1,750116,4523,499 (96.8)3,594 (99.5)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019.
PHD_GSDL16
78. online method using public detections
44.9
41.0
±8.9
43.111.3% 41.5% 6,49899,2571,810 (39.7)3,650 (80.1)8.3Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
MTT_TPR
79. using public detections
23.7
54.9
±11.7
53.118.7% 34.8% 4,13076,6731,447 (25.0)3,693 (63.7)6.7Public
Anonymous submission
GM_PHD_e17
80. online method using public detections
51.4
33.8
±8.9
25.36.3% 54.9% 1,766115,1303,778 (102.5)3,874 (105.1)3.3Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
SMOT
81. using public detections
63.5
29.7
±7.3
0.05.3% 47.7% 17,426107,5523,108 (75.8)4,483 (109.3)0.2Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
GM_PHD_DAL
82. online method using public detections
50.0
35.1
±9.1
26.67.0% 51.4% 2,350111,8864,047 (104.8)5,338 (138.2)3.5Public
https://www.researchgate.net/publication/333521185_Online_Multi-object_Visual_Tracking_using_a_GM-PHD_Filter_with_Deep_Appearance_Learning
GM_PHD_Dl
83. online method using public detections
50.9
34.3
±9.1
20.57.1% 51.5% 2,350111,8865,605 (145.1)5,357 (138.7)3.5Public
Anonymous submission

Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(52.2% MOTA)

MOT16-06

MOT16-06

(45.2% MOTA)

MOT16-07

MOT16-07

(38.9% MOTA)

...

...

MOT16-08

MOT16-08

(30.4% MOTA)

MOT16-14

MOT16-14

(24.7% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.