MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTA IDF1MTMLFPFNID Sw.FragHzDetector
SMOT
1. using public detections
57.8
29.7
±7.3
0.05.3% 47.7% 17,426107,5523,108 (75.8)4,483 (109.3)0.2Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
JPDA_m
2. using public detections
35.8
26.2
±6.1
0.04.1% 67.5% 3,689130,549365 (12.9)638 (22.5)22.2Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
CEM
3. using public detections
39.7
33.2
±7.9
0.07.8% 54.4% 6,837114,322642 (17.2)731 (19.6)0.3Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
TBD
4. using public detections
49.8
33.7
±9.2
0.07.2% 54.2% 5,804112,5872,418 (63.2)2,252 (58.9)1.3Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
rookie_ksp
5. using public detections
49.9
24.8
±7.7
11.52.4% 66.1% 1,421132,3613,343 (122.0)4,886 (178.3)19.7Public
Anonymous submission
GM_PHD_N1T
6. online method using public detections
45.4
31.6
±8.6
19.75.5% 55.2% 4,767115,6454,348 (118.9)3,986 (109.0)9.9Public
Anonymous submission
CppSORT
7. online method using public detections
40.9
31.5
±9.0
27.74.3% 59.9% 3,048120,2781,587 (46.6)2,239 (65.8)687.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
HISP_T
8. online method using public detections
44.7
35.9
±8.5
28.97.8% 50.1% 6,412107,9182,594 (63.6)2,298 (56.3)4.8Public
Anonymous submission
ERCTracker
9. online method using public detections
36.9
32.3
±9.4
29.25.7% 62.1% 1,193121,333953 (28.5)943 (28.2)32.0Public
Anonymous submission
CMRZF
10. using public detections
37.6
30.4
±10.8
29.42.9% 70.5% 1,421124,4831,030 (32.5)733 (23.1)16.9Public
Anonymous submission
TrackerAvg RankMOTA IDF1MTMLFPFNID Sw.FragHzDetector
GMPHD_AM
11. online method using public detections
41.2
30.6
±6.7
30.25.9% 53.1% 4,982120,698930 (27.5)1,856 (54.9)7.9Public
Anonymous submission
DP_NMS
12. using public detections
34.3
26.2
±9.3
31.24.1% 67.5% 3,689130,557365 (12.9)638 (22.5)5.9Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
DQNTracker
13. online method using public detections
43.0
33.7
±13.7
31.76.9% 59.3% 5,210113,8651,744 (46.4)4,184 (111.4)9.9Public
Anonymous submission
NHL
14. using public detections
35.8
45.1
±8.5
32.315.9% 37.3% 12,60585,6911,747 (33.0)2,033 (38.4)0.3Public
Anonymous submission
tMOT
15. using public detections
38.2
28.9
±10.5
32.45.8% 63.0% 3,754125,494468 (15.0)694 (22.3)11.8Public
Anonymous submission
DeepAC
16. online method using public detections
37.6
38.8
±9.3
33.19.1% 42.8% 5,444103,1742,886 (66.5)6,592 (151.9)21.1Public
Anonymous submission
GMPHD_HDA
17. online method using public detections
35.0
30.5
±6.9
33.44.6% 59.7% 5,169120,970539 (16.0)731 (21.7)13.6Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
LP2D
18. using public detections
36.6
35.7
±10.1
34.28.7% 50.7% 5,084111,163915 (23.4)1,264 (32.4)49.3Public
MOT baseline: Linear programming on 2D image coordinates.
HFCLP
19. using public detections
33.1
42.7
±7.6
35.112.9% 40.2% 8,50294,2661,676 (34.7)1,792 (37.1)19.7Public
Anonymous submission
GMMCP
20. using public detections
41.4
38.1
±7.8
35.58.6% 50.9% 6,607105,315937 (22.2)1,669 (39.5)0.5Public
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
TrackerAvg RankMOTA IDF1MTMLFPFNID Sw.FragHzDetector
TTAR
21. using public detections
36.1
42.2
±8.0
37.210.4% 47.8% 4,87299,550909 (20.0)945 (20.8)19.7Public
Anonymous submission
OVBT
22. online method using public detections
49.8
38.4
±8.8
37.87.5% 47.3% 11,51799,4631,321 (29.1)2,140 (47.1)0.3Public
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
QuadMOT16
23. using public detections
31.9
44.1
±9.4
38.314.6% 44.9% 6,38894,775745 (15.5)1,096 (22.8)1.8Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
DCCRF16
24. online method using public detections
31.1
44.8
±9.5
39.714.1% 42.3% 5,61394,125968 (20.0)1,378 (28.5)0.1Public
Anonymous submission
ARM16
25. using public detections
36.4
35.3
±7.7
40.312.8% 38.5% 23,52092,1712,334 (47.2)3,516 (71.1)5.9Public
Anonymous submission
dmot
26. using public detections
33.3
40.7
±8.3
40.612.0% 44.1% 9,31997,992773 (16.7)1,106 (23.9)6.6Public
Anonymous submission
oBot
27. online method using public detections
36.4
42.5
±20.4
40.812.6% 40.7% 10,42092,8921,559 (31.8)1,639 (33.4)2.3Public
Anonymous BMVC submission
JCSTD
28. online method using public detections
28.0
47.4
±8.3
41.114.4% 36.4% 8,07786,6311,266 (24.1)2,696 (51.4)3.3Public
Anonymous submission
HSFSC
29. online method using public detections
33.0
43.3
±9.1
41.612.0% 43.9% 5,55896,996874 (18.7)1,482 (31.7)3.0Public
Anonymous submission
SLT
30. online method using public detections
38.3
41.5
±10.4
41.611.7% 37.0% 8,07496,9561,705 (36.4)3,170 (67.7)9.6Public
Anonymous submission
TrackerAvg RankMOTA IDF1MTMLFPFNID Sw.FragHzDetector
LFNF16
31. using public detections
32.9
43.6
±11.0
41.613.3% 45.7% 6,61695,363836 (17.5)938 (19.7)0.6Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
IMWIS
32. using public detections
22.7
47.0
±9.3
41.816.2% 41.4% 4,84290,901868 (17.3)904 (18.0)0.7Public
Anonymous submission
LTTSC-CRF
33. using public detections
39.3
37.6
±9.9
42.19.6% 55.2% 11,969101,343481 (10.8)1,012 (22.8)0.6Public
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
EAMTT_pub
34. online method using public detections
37.4
38.8
±8.5
42.47.9% 49.1% 8,114102,452965 (22.0)1,657 (37.8)11.8Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
TBSS
35. online method using public detections
32.7
44.6
±9.3
42.612.3% 43.9% 4,13696,128790 (16.7)1,419 (30.0)3.0Public
Anonymous submission
SAC
36. online method using public detections
32.7
44.6
±9.2
42.712.1% 43.6% 3,92996,285795 (16.8)1,414 (30.0)1.1Public
Anonymous submission
ReIDT
37. online method using public detections
36.6
40.0
±10.3
43.313.6% 38.1% 17,08891,2411,064 (21.3)2,274 (45.5)6.5Public
Anonymous submission
FWT
38. using public detections
21.5
47.8
±9.4
44.319.1% 38.2% 8,88685,487852 (16.0)1,534 (28.9)0.6Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. A Novel Multi-Detector Fusion Framework for Multi-Object Tracking. In arXiv preprint arXiv:1705.08314, 2017.
GMCSS
39. online method using public detections
41.3
38.3
±9.0
44.79.4% 46.6% 16,49195,303735 (15.4)2,122 (44.5)0.4Public
Anonymous submission
PRMOT
40. using public detections
36.8
43.1
±9.3
44.814.5% 41.8% 10,49592,1741,145 (23.2)1,999 (40.4)0.6Public
Anonymous submission
TrackerAvg RankMOTA IDF1MTMLFPFNID Sw.FragHzDetector
FullTest
41. online method using public detections
34.8
40.7
±32.6
44.811.6% 42.3% 14,35492,6501,136 (23.1)3,864 (78.6)236.8Public
Anonymous submission
CDA_DDALv2
42. online method using public detections
31.8
43.9
±7.8
45.110.7% 44.4% 6,45095,175676 (14.1)1,795 (37.6)0.5Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking, In IEEE TPAMI, 2017.
LINF1
43. using public detections
31.7
41.0
±9.5
45.711.6% 51.3% 7,89699,224430 (9.4)963 (21.1)4.2Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
MHT_DAM
44. using public detections
23.7
45.8
±8.9
46.116.2% 43.2% 6,41291,758590 (11.9)781 (15.7)0.8Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
AMIR
45. online method using public detections
21.8
47.2
±7.7
46.314.0% 41.6% 2,68192,856774 (15.8)1,675 (34.1)1.0Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
JMC
46. using public detections
21.1
46.3
±9.0
46.315.5% 39.7% 6,37390,914657 (13.1)1,114 (22.2)0.8Public
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
HAF16
47. using public detections
23.9
45.7
±8.9
47.215.4% 41.4% 10,03888,319660 (12.8)985 (19.1)0.7Public
Anonymous submission
NLLMPa
48. using public detections
16.8
47.6
±10.6
47.317.0% 40.4% 5,84489,093629 (12.3)768 (15.0)8.3Public
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
Adaptation
49. using public detections
14.0
47.6
±10.6
47.417.0% 40.4% 5,78389,168627 (12.3)761 (14.9)2.5Public
Anonymous submission
STFP
50. online method using public detections
42.2
39.8
±8.9
47.413.0% 41.4% 12,11896,755950 (20.2)2,630 (56.0)0.4Public
Anonymous submission
TrackerAvg RankMOTA IDF1MTMLFPFNID Sw.FragHzDetector
MOT_M_hun
51. using public detections
34.5
39.0
±10.3
47.513.7% 40.1% 15,34595,029843 (17.6)1,790 (37.4)1.2Public
Anonymous submission
EDMT
52. using public detections
20.3
45.3
±9.1
47.917.0% 39.9% 11,12287,890639 (12.3)946 (18.3)1.8Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
AFN
53. using public detections
18.3
49.0
±10.2
48.219.1% 35.7% 9,50882,506899 (16.4)1,383 (25.3)0.6Public
Anonymous submission
Q_lc
54. online method using public detections
36.8
37.9
±10.3
48.314.2% 37.9% 19,33393,157697 (14.3)1,918 (39.2)0.3Public
Anonymous submission
GCRA
55. using public detections
19.8
48.2
±8.3
48.612.9% 41.1% 5,10488,586821 (16.0)1,117 (21.7)2.8Public
Anonymous submission
RAR16pub
56. online method using public detections
28.9
45.9
±9.7
48.813.2% 41.9% 6,87191,173648 (13.0)1,992 (39.8)0.9Public
Anonymous ICCV submission
EMOT
57. online method using public detections
32.5
43.0
±8.8
49.213.8% 42.7% 9,52193,672712 (14.6)1,903 (39.1)0.4Public
Anonymous submission
oICF
58. online method using public detections
33.3
43.2
±10.2
49.311.3% 48.5% 6,65196,515381 (8.1)1,404 (29.8)0.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
STAM16
59. online method using public detections
29.6
46.0
±9.1
50.014.6% 43.6% 6,89591,117473 (9.5)1,422 (28.4)0.2Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism. In arXiv preprint arXiv:1708.02843, 2017.
EAGS16
60. using public detections
14.5
47.4
±10.4
50.117.3% 42.7% 8,36986,931575 (11.0)913 (17.5)197.3Public
#PR-D-17-01373# Enhancing Association Graph with Super-voxel for Multi-target Tracking
TrackerAvg RankMOTA IDF1MTMLFPFNID Sw.FragHzDetector
OVMOT
61. online method using public detections
35.8
41.9
±8.8
50.115.0% 43.0% 10,71294,510626 (13.0)2,008 (41.7)0.4Public
Anonymous submission
RMFP
62. online method using public detections
35.3
43.4
±9.2
50.414.9% 44.0% 7,55995,015682 (14.2)1,999 (41.7)0.3Public
Anonymous submission
PSMT
63. using public detections
35.8
43.9
±9.3
50.715.4% 42.8% 9,10992,271944 (19.1)2,036 (41.2)0.3Public
Anonymous submission
HCC
64. using public detections
11.7
49.3
±10.2
50.717.8% 39.9% 5,33386,795391 (7.5)535 (10.2)0.8Public
Anonymous submission
STbase
65. using public detections
32.9
43.7
±9.2
50.815.2% 43.0% 8,89193,036662 (13.5)1,844 (37.7)0.4Public
Anonymous submission
overMOT
66. online method using public detections
32.5
43.7
±9.3
50.815.2% 43.0% 8,89193,036662 (13.5)1,844 (37.7)0.4Public
Anonymous submission
MOTDT
67. online method using public detections
20.9
47.6
±8.2
50.915.2% 38.3% 9,25385,431792 (14.9)1,858 (35.0)20.6Public
Anonymous ICME submission
NOSVM
68. using public detections
32.9
43.6
±9.4
51.115.3% 42.8% 9,10692,991718 (14.7)2,084 (42.5)0.4Public
Anonymous submission
LMP
69. using public detections
14.8
48.8
±9.8
51.318.2% 40.1% 6,65486,245481 (9.1)595 (11.3)0.5Public
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
MCjoint
70. using public detections
18.6
47.1
±10.8
52.320.4% 46.9% 6,70389,368370 (7.3)598 (11.7)0.6Public
M. Keuper, S. Tang, Z. Yu, B. Andres, T. Brox, B. Schiele. A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects. In CoRR, 2016.
TrackerAvg RankMOTA IDF1MTMLFPFNID Sw.FragHzDetector
UBTT
71. using public detections
24.1
47.2
±16.8
52.418.6% 42.8% 12,58683,107542 (10.0)787 (14.5)0.5Public
Anonymous submission
NOMT
72. using public detections
16.3
46.4
±9.9
53.318.3% 41.4% 9,75387,565359 (6.9)504 (9.7)2.6Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
STMOT
73. using public detections
27.8
45.4
±9.2
53.316.3% 42.8% 8,07190,883561 (11.2)1,548 (30.9)0.3Public
Anonymous submission
ONEEC
74. online method using public detections
26.0
45.3
±9.5
53.716.3% 42.4% 8,42390,821550 (11.0)1,574 (31.4)0.3Public
Anonymous submission
ASSMOT
75. using public detections
20.5
46.0
±9.3
54.416.6% 42.7% 8,04589,959538 (10.6)1,623 (32.0)0.4Public
Anonymous submission
DMMOT
76. online method using public detections
19.3
46.1
±11.1
54.817.4% 42.7% 7,90989,874532 (10.5)1,616 (31.9)0.5Public
Anonymous submission

Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(51.7% MOTA)

MOT16-06

MOT16-06

(44.1% MOTA)

MOT16-07

MOT16-07

(38.0% MOTA)

...

...

MOT16-08

MOT16-08

(29.4% MOTA)

MOT16-14

MOT16-14

(24.5% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.