MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
cm_test
1. online method using public detections
34.2
35.4
±20.2
40.36.5% 71.4% 4,427112,889402 (10.6)1,176 (30.9)1.6Public
Anonymous submission
DP_NMS
2. using public detections
32.8
26.2
±9.3
31.24.1% 67.5% 3,689130,557365 (12.9)638 (22.5)5.9Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
JPDA_m
3. using public detections
34.3
26.2
±6.1
0.04.1% 67.5% 3,689130,549365 (12.9)638 (22.5)22.2Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
DCOR
4. online method using public detections
40.7
28.2
±8.9
20.94.0% 62.7% 2,117127,6871,099 (36.7)2,791 (93.1)32.9Public
Anonymous submission
TDP
5. online method using public detections
38.3
33.9
±10.2
40.46.2% 62.2% 6,709113,249480 (12.7)1,105 (29.2)9.7Public
Anonymous submission
DRT
6. online method using public detections
34.8
34.7
±11.4
41.16.3% 61.8% 6,992111,617460 (11.9)1,127 (29.1)6.2Public
Anonymous submission
CppSORT
7. online method using public detections
39.4
31.5
±9.0
27.74.3% 59.9% 3,048120,2781,587 (46.6)2,239 (65.8)687.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
GMPHD_HDA
8. online method using public detections
34.1
30.5
±6.9
33.44.6% 59.7% 5,169120,970539 (16.0)731 (21.7)13.6Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
GM_PHD_N1T
9. online method using public detections
42.1
33.3
±8.9
25.55.5% 56.0% 1,750116,4523,499 (96.8)3,594 (99.5)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD Filter for Multiple Target, Multiple Type Visual Tracking. In CoRR, 2017.
LTTSC-CRF
10. using public detections
38.3
37.6
±9.9
42.19.6% 55.2% 11,969101,343481 (10.8)1,012 (22.8)0.6Public
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
CEM
11. using public detections
38.7
33.2
±7.9
0.07.8% 54.4% 6,837114,322642 (17.2)731 (19.6)0.3Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
JCmin_MOT
12. online method using public detections
32.8
36.7
±9.1
36.27.5% 54.4% 2,936111,890667 (17.3)831 (21.5)14.8Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
HAM_ACT16
13. online method using public detections
30.3
38.1
±8.2
43.37.8% 54.4% 6,976105,434418 (9.9)707 (16.8)8.0Public
TBD
14. using public detections
47.4
33.7
±9.2
0.07.2% 54.2% 5,804112,5872,418 (63.2)2,252 (58.9)1.3Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
LINF1
15. using public detections
31.1
41.0
±9.5
45.711.6% 51.3% 7,89699,224430 (9.4)963 (21.1)4.2Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
GCK
16. online method using public detections
45.3
28.7
±8.5
30.63.4% 51.0% 21,436106,4242,217 (53.3)3,277 (78.7)25.1Public
Anonymous submission
GMMCP
17. using public detections
40.4
38.1
±7.8
35.58.6% 50.9% 6,607105,315937 (22.2)1,669 (39.5)0.5Public
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
LP2D
18. using public detections
35.9
35.7
±10.1
34.28.7% 50.7% 5,084111,163915 (23.4)1,264 (32.4)49.3Public
MOT baseline: Linear programming on 2D image coordinates.
HISP_T2
19. online method using public detections
39.9
37.2
±8.6
29.77.6% 50.7% 3,323108,8592,370 (58.8)2,234 (55.4)4.8Public
Anonymous submission
D_cost16
20. online method using public detections new
29.7
39.9
±9.1
35.38.7% 50.2% 1,133107,586790 (19.3)824 (20.1)8.5Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
HISP_T
21. online method using public detections
41.6
35.9
±8.5
28.97.8% 50.1% 6,412107,9182,594 (63.6)2,298 (56.3)4.8Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
EAMTT_pub
22. online method using public detections
35.3
38.8
±8.5
42.47.9% 49.1% 8,114102,452965 (22.0)1,657 (37.8)11.8Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
oICF
23. online method using public detections
33.0
43.2
±10.2
49.311.3% 48.5% 6,65196,515381 (8.1)1,404 (29.8)0.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
SMOT
24. using public detections
53.3
29.7
±7.3
0.05.3% 47.7% 17,426107,5523,108 (75.8)4,483 (109.3)0.2Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
TST_PLS
25. online method using public detections
40.4
39.7
±11.1
43.36.7% 47.4% 8,447100,728783 (17.5)1,730 (38.7)4.0Public
Anonymous submission
OVBT
26. online method using public detections
46.4
38.4
±8.8
37.87.5% 47.3% 11,51799,4631,321 (29.1)2,140 (47.1)0.3Public
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
MCjoint
27. using public detections
20.8
47.1
±10.8
52.320.4% 46.9% 6,70389,368370 (7.3)598 (11.7)0.6Public
}@article{DBLP:journals/corr/KeuperTYABS16, author = {Margret Keuper and Siyu Tang and Zhongjie Yu and Bjoern Andres and Thomas Brox and Bernt Schiele}, title = {A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects}, journal = {CoRR}, volume = {abs/1607.06317}, year = {2016}, url = {http://arxiv.org/abs/1607.06317}, timestamp = {Wed, 07 Jun 2017 14:41:31 +0200}, biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/KeuperTYABS16}, bibsource = {dblp computer science bibliography, http://dblp.org} }
AM_ADM
28. online method using public detections
33.9
40.1
±10.1
43.87.1% 46.2% 8,50399,891789 (17.5)1,736 (38.4)5.8Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
YT16
29. online method using public detections
40.5
37.8
±8.8
31.18.8% 46.1% 4,384106,3652,655 (63.7)2,750 (66.0)12.1Public
Anonymous submission
CSAHD
30. online method using public detections
32.8
43.7
±11.6
45.710.5% 46.1% 8,31893,273984 (20.1)2,164 (44.3)7.0Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
LFNF16
31. using public detections
33.9
43.6
±11.0
41.613.3% 45.7% 6,61695,363836 (17.5)938 (19.7)0.6Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
QuadMOT16
32. using public detections
32.3
44.1
±9.4
38.314.6% 44.9% 6,38894,775745 (15.5)1,096 (22.8)1.8Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
TLMHT
33. using public detections
19.5
48.7
±8.6
55.315.7% 44.5% 6,63286,504413 (7.9)642 (12.2)4.8Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
CDA_DDALv2
34. online method using public detections
32.3
43.9
±7.8
45.110.7% 44.4% 6,45095,175676 (14.1)1,795 (37.6)0.5Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
MHT_bLSTM6
35. using public detections
32.7
42.1
±9.7
47.814.9% 44.4% 11,63793,172753 (15.4)1,156 (23.6)1.8Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
TBSS
36. online method using public detections
32.7
44.6
±9.3
42.612.3% 43.9% 4,13696,128790 (16.7)1,419 (30.0)3.0Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
STAM16
37. online method using public detections
30.6
46.0
±9.1
50.014.6% 43.6% 6,89591,117473 (9.5)1,422 (28.4)0.2Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
TBNMF16
38. online method using public detections
27.9
45.6
±8.9
46.013.4% 43.5% 4,23094,435584 (12.1)1,229 (25.5)4.5Public
Anonymous submission
MHT_DAM
39. using public detections
25.8
45.8
±8.9
46.116.2% 43.2% 6,41291,758590 (11.9)781 (15.7)0.8Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
CMT16
40. using public detections
15.5
47.6
±9.4
52.719.0% 43.0% 11,17783,779495 (9.2)757 (14.0)6.3Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
eHAF16
41. using public detections
21.8
47.2
±16.8
52.418.6% 42.8% 12,58683,107542 (10.0)787 (14.5)0.5Public
TCSVT-02141-2018
DMMOT
42. online method using public detections
24.6
46.1
±11.1
54.817.4% 42.7% 7,90989,874532 (10.5)1,616 (31.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
DCCRF16
43. online method using public detections
32.8
44.8
±9.8
39.714.1% 42.3% 5,61394,133968 (20.0)1,378 (28.5)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
RAR16pub
44. online method using public detections
31.4
45.9
±9.7
48.813.2% 41.9% 6,87191,173648 (13.0)1,992 (39.8)0.9Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
deepS2
45. using public detections
30.9
43.6
±8.1
40.415.4% 41.9% 8,81993,095871 (17.8)851 (17.4)0.7Public
ID 32
AMIR
46. online method using public detections
24.0
47.2
±7.7
46.314.0% 41.6% 2,68192,856774 (15.8)1,675 (34.1)1.0Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
ASTT
47. using public detections
21.8
47.2
±9.6
44.316.3% 41.6% 4,68090,877633 (12.6)814 (16.2)0.5Public
Yi Tao el al., “Adaptive Spatio-temporal Model Based Multiple Object Tracking Considering a Moving Camera[C]”, International Conference on Universal Village (UV), 2018.
NOMT
48. using public detections
19.6
46.4
±9.9
53.318.3% 41.4% 9,75387,565359 (6.9)504 (9.7)2.6Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
GCRA
49. using public detections
23.0
48.2
±8.3
48.612.9% 41.1% 5,10488,586821 (16.0)1,117 (21.7)2.8Public
C. Ma, C. Yang, F. Yang, Y. Zhuang, Z. Zhang, H. Jia, X. Xie. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. In ICME, 2018.
TPM
50. using public detections new
18.0
51.3
±9.3
47.918.7% 40.8% 2,70185,504569 (10.7)707 (13.3)0.8Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
NLLMPa
51. using public detections
19.9
47.6
±10.6
47.317.0% 40.4% 5,84489,093629 (12.3)768 (15.0)8.3Public
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
eTC
52. using public detections
18.5
49.2
±9.1
56.117.3% 40.3% 8,40083,702606 (11.2)882 (16.3)0.7Public
Anonymous submission
TripT
53. online method using public detections
23.5
48.1
±8.5
51.915.8% 40.2% 2,82791,210563 (11.3)1,143 (22.9)0.6Public
Anonymous submission
LMP
54. using public detections
18.8
48.8
±9.8
51.318.2% 40.1% 6,65486,245481 (9.1)595 (11.3)0.5Public
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
TripBFT
55. online method using public detections
22.9
48.3
±8.1
50.915.4% 40.1% 2,70691,047543 (10.8)896 (17.9)0.5Public
Anonymous submission
EDMT
56. using public detections
24.1
45.3
±9.1
47.917.0% 39.9% 11,12287,890639 (12.3)946 (18.3)1.8Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
JMC
57. using public detections
24.8
46.3
±9.0
46.315.5% 39.7% 6,37390,914657 (13.1)1,114 (22.2)0.8Public
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
TSN
58. using public detections
24.8
48.2
±8.7
45.719.9% 38.9% 8,44785,315665 (12.5)829 (15.6)0.8Public
Anonymous submission
INTERA_MOT
59. using public detections
23.2
45.4
±8.6
47.718.1% 38.7% 13,40785,547600 (11.3)930 (17.5)4.3Public
L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao, T. Huang. Interacting Tracklets for Multi-object Tracking. In IEEE Transactions on Image Processing, 2018.
MOTDT
60. online method using public detections
24.6
47.6
±8.2
50.915.2% 38.3% 9,25385,431792 (14.9)1,858 (35.0)20.6Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
FWT
61. using public detections
25.9
47.8
±9.4
44.319.1% 38.2% 8,88685,487852 (16.0)1,534 (28.9)0.6Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
NOTC
62. using public detections new
16.4
49.8
±8.2
55.116.9% 37.8% 6,46484,539586 (10.9)1,338 (24.9)19.7Public
Anonymous submission
SRPN16
63. online method using public detections
27.7
48.2
±8.5
51.814.5% 37.7% 7,70485,982838 (15.9)1,985 (37.6)1.4Public
Anonymous submission
PDetTracId
64. online method using public detections
25.8
49.7
±9.4
46.816.7% 37.3% 4,39386,2411,040 (19.7)3,652 (69.3)2.4Public
Anonymous submission
HDTR
65. using public detections
13.8
53.6
±8.7
46.621.2% 37.0% 4,71479,353618 (10.9)833 (14.7)3.6Public
BnW
66. online method using public detections
15.7
53.6
±13.6
52.819.0% 36.6% 5,21778,471909 (16.0)1,742 (30.6)2.7Public
Anonymous submission
JCSTD
67. online method using public detections
28.9
47.4
±8.3
41.114.4% 36.4% 8,07686,6381,266 (24.1)2,697 (51.4)8.8Public
Anonymous submission
MTDF
68. online method using public detections
35.0
45.7
±11.2
40.114.1% 36.4% 12,01884,9701,987 (37.2)3,377 (63.2)1.5Public
Anonymous submission
CRF_RNN16
69. using public detections new
17.8
49.0
±7.2
53.918.1% 35.8% 8,49583,838621 (11.5)1,252 (23.2)1.3Public
Anonymous submission
AFN
70. using public detections
20.8
49.0
±10.2
48.219.1% 35.7% 9,50882,506899 (16.4)1,383 (25.3)0.6Public
Paper ID 4411
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TAR
71. online method using public detections new
27.8
49.4
±8.1
40.018.4% 30.6% 11,22079,8391,180 (21.0)2,052 (36.5)5.0Public
Anonymous submission

Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(52.4% MOTA)

MOT16-06

MOT16-06

(43.5% MOTA)

MOT16-07

MOT16-07

(37.9% MOTA)

...

...

MOT16-08

MOT16-08

(29.8% MOTA)

MOT16-14

MOT16-14

(23.8% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.