MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
CRC_MB
1. using public detections
20.6
46.6
±12.9
48.322.8% 29.1% 17,14578,9441,268 (22.4)1,865 (32.9)8.5Public
Anonymous submission
AFN
2. using public detections
19.3
49.0
±10.2
48.219.1% 35.7% 9,50882,506899 (16.4)1,383 (25.3)0.6Public
Paper ID 4411
JCSTD
3. online method using public detections
26.7
47.4
±8.3
41.114.4% 36.4% 8,07686,6381,266 (24.1)2,697 (51.4)8.8Public
Anonymous submission
MTDF
4. online method using public detections
32.6
45.7
±11.2
40.114.1% 36.4% 12,01884,9701,987 (37.2)3,377 (63.2)1.5Public
Anonymous submission
PDetTracId
5. online method using public detections new
23.1
49.7
±9.4
46.816.7% 37.3% 4,39386,2411,040 (19.7)3,652 (69.3)2.4Public
Anonymous submission
KCF16
6. online method using public detections
22.6
48.8
±9.6
47.215.8% 38.1% 5,87586,567906 (17.3)1,116 (21.2)0.1Public
Paper ID 207
FWT
7. using public detections
23.6
47.8
±9.4
44.319.1% 38.2% 8,88685,487852 (16.0)1,534 (28.9)0.6Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
MOTDT
8. online method using public detections
21.9
47.6
±8.2
50.915.2% 38.3% 9,25385,431792 (14.9)1,858 (35.0)20.6Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
PRT
9. online method using public detections
33.5
40.8
±13.0
44.213.7% 38.3% 15,14391,7921,051 (21.2)2,210 (44.5)6.2Public
Anonymous submission
INTERA_MOT
10. using public detections
20.4
45.4
±8.6
47.718.1% 38.7% 13,40785,547600 (11.3)930 (17.5)4.3Public
L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao, T. Huang. Interacting Tracklets for Multi-object Tracking. In IEEE Transactions on Image Processing, 2018.
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
TPM
11. using public detections
21.3
49.1
±9.1
46.920.0% 38.9% 9,03883,031679 (12.5)850 (15.6)0.8Public
Anonymous submission
TSN
12. using public detections
22.5
48.2
±8.7
45.719.9% 38.9% 8,44785,315665 (12.5)829 (15.6)0.8Public
Anonymous submission
JMC
13. using public detections
22.2
46.3
±9.0
46.315.5% 39.7% 6,37390,914657 (13.1)1,114 (22.2)0.8Public
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
EDMT
14. using public detections
21.6
45.3
±9.1
47.917.0% 39.9% 11,12287,890639 (12.3)946 (18.3)1.8Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
LMP
15. using public detections
16.2
48.8
±9.8
51.318.2% 40.1% 6,65486,245481 (9.1)595 (11.3)0.5Public
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
TripBFT
16. online method using public detections
20.3
48.3
±8.1
50.915.4% 40.1% 2,70691,047543 (10.8)896 (17.9)0.5Public
Anonymous submission
TripT
17. online method using public detections
21.3
48.1
±8.5
51.915.8% 40.2% 2,82791,210563 (11.3)1,143 (22.9)0.6Public
Anonymous submission
eTC
18. using public detections new
16.5
49.2
±9.1
56.117.3% 40.3% 8,40083,702606 (11.2)882 (16.3)0.7Public
Anonymous submission
NLLMPa
19. using public detections
17.7
47.6
±10.6
47.317.0% 40.4% 5,84489,093629 (12.3)768 (15.0)8.3Public
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
GCRA
20. using public detections
20.8
48.2
±8.3
48.612.9% 41.1% 5,10488,586821 (16.0)1,117 (21.7)2.8Public
C. Ma, C. Yang, F. Yang, Y. Zhuang, Z. Zhang, H. Jia, X. Xie. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. In ICME, 2018.
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
NOMT
21. using public detections
17.5
46.4
±9.9
53.318.3% 41.4% 9,75387,565359 (6.9)504 (9.7)2.6Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
AMIR
22. online method using public detections
22.0
47.2
±7.7
46.314.0% 41.6% 2,68192,856774 (15.8)1,675 (34.1)1.0Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
RAR16pub
23. online method using public detections
28.3
45.9
±9.7
48.813.2% 41.9% 6,87191,173648 (13.0)1,992 (39.8)0.9Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
deepS2
24. using public detections
28.2
43.6
±8.1
40.415.4% 41.9% 8,81993,095871 (17.8)851 (17.4)0.7Public
ID 32
DCCRF16
25. online method using public detections
29.8
44.8
±9.8
39.714.1% 42.3% 5,61394,133968 (20.0)1,378 (28.5)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
EAGS16
26. using public detections
15.4
47.4
±10.4
50.117.3% 42.7% 8,36986,931575 (11.0)913 (17.5)197.3Public
DMMOT
27. online method using public detections
22.1
46.1
±11.1
54.817.4% 42.7% 7,90989,874532 (10.5)1,616 (31.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
eHAF16
28. using public detections
19.4
47.2
±16.8
52.418.6% 42.8% 12,58683,107542 (10.0)787 (14.5)0.5Public
TCSVT-02141-2018
MHT_DAM
29. using public detections
23.0
45.8
±8.9
46.116.2% 43.2% 6,41291,758590 (11.9)781 (15.7)0.8Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
STAM16
30. online method using public detections
27.8
46.0
±9.1
50.014.6% 43.6% 6,89591,117473 (9.5)1,422 (28.4)0.2Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
TBSS
31. online method using public detections
30.3
44.6
±9.3
42.612.3% 43.9% 4,13696,128790 (16.7)1,419 (30.0)3.0Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
CDA_DDALv2
32. online method using public detections
29.5
43.9
±7.8
45.110.7% 44.4% 6,45095,175676 (14.1)1,795 (37.6)0.5Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
MHT_bLSTM6
33. using public detections
30.2
42.1
±9.7
47.814.9% 44.4% 11,63793,172753 (15.4)1,156 (23.6)1.8Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
TLMHT
34. using public detections
17.2
48.7
±8.6
55.315.7% 44.5% 6,63286,504413 (7.9)642 (12.2)4.8Public
TCSVT-02160-2018
QuadMOT16
35. using public detections
29.8
44.1
±9.4
38.314.6% 44.9% 6,38894,775745 (15.5)1,096 (22.8)1.8Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
TBNMF16
36. online method using public detections
35.0
42.0
±9.2
37.510.4% 44.9% 4,96699,7781,085 (24.0)1,400 (30.9)4.5Public
Anonymous submission
LFNF16
37. using public detections
31.2
43.6
±11.0
41.613.3% 45.7% 6,61695,363836 (17.5)938 (19.7)0.6Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
YT16
38. online method using public detections
39.3
37.8
±8.8
31.18.8% 46.1% 4,384106,3652,655 (63.7)2,750 (66.0)12.1Public
Anonymous submission
CSAHD
39. online method using public detections
30.8
43.7
±11.6
45.710.5% 46.1% 8,31893,273984 (20.1)2,164 (44.3)7.0Public
Anonymous submission
AM_ADM
40. online method using public detections
33.1
40.1
±10.1
43.87.1% 46.2% 8,50399,891789 (17.5)1,736 (38.4)4.7Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
TripletT
41. online method using public detections
28.0
44.6
±9.7
48.812.6% 46.6% 2,72597,948422 (9.1)1,093 (23.6)0.1Public
Anonymous submission
MCjoint
42. using public detections
18.5
47.1
±10.8
52.320.4% 46.9% 6,70389,368370 (7.3)598 (11.7)0.6Public
M. Keuper, S. Tang, Z. Yu, B. Andres, T. Brox, B. Schiele. A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects. In CoRR, 2016.
VOFNet
43. online method using public detections
33.1
40.9
±8.3
46.79.7% 47.0% 4,750102,277684 (15.6)4,310 (98.2)24.9Public
Anonymous submission
OVBT
44. online method using public detections
44.4
38.4
±8.8
37.87.5% 47.3% 11,51799,4631,321 (29.1)2,140 (47.1)0.3Public
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
TST_PLS
45. online method using public detections
39.2
39.7
±11.1
43.36.7% 47.4% 8,447100,728783 (17.5)1,730 (38.7)4.0Public
Anonymous submission
SMOT
46. using public detections
51.8
29.7
±7.3
0.05.3% 47.7% 17,426107,5523,108 (75.8)4,483 (109.3)0.2Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
oICF
47. online method using public detections
30.4
43.2
±10.2
49.311.3% 48.5% 6,65196,515381 (8.1)1,404 (29.8)0.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
EAMTT_pub
48. online method using public detections
34.1
38.8
±8.5
42.47.9% 49.1% 8,114102,452965 (22.0)1,657 (37.8)11.8Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
SDMT
49. online method using public detections
31.2
39.6
±8.3
42.311.7% 49.1% 11,13098,343602 (13.1)772 (16.8)19.8Public
Anonymous submission
HISP_T
50. online method using public detections
40.2
35.9
±8.5
28.97.8% 50.1% 6,412107,9182,594 (63.6)2,298 (56.3)4.8Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
LP2D
51. using public detections
34.6
35.7
±10.1
34.28.7% 50.7% 5,084111,163915 (23.4)1,264 (32.4)49.3Public
MOT baseline: Linear programming on 2D image coordinates.
GMMCP
52. using public detections
38.9
38.1
±7.8
35.58.6% 50.9% 6,607105,315937 (22.2)1,669 (39.5)0.5Public
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
GCK
53. online method using public detections
44.0
28.7
±8.5
30.63.4% 51.0% 21,436106,4242,217 (53.3)3,277 (78.7)25.1Public
Anonymous submission
LINF1
54. using public detections
29.3
41.0
±9.5
45.711.6% 51.3% 7,89699,224430 (9.4)963 (21.1)4.2Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
TBD
55. using public detections
45.3
33.7
±9.2
0.07.2% 54.2% 5,804112,5872,418 (63.2)2,252 (58.9)1.3Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
CEM
56. using public detections
36.6
33.2
±7.9
0.07.8% 54.4% 6,837114,322642 (17.2)731 (19.6)0.3Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
JCmin_MOT
57. online method using public detections
31.2
36.7
±9.1
36.27.5% 54.4% 2,936111,890667 (17.3)831 (21.5)14.8Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
HAM_ACT16
58. online method using public detections
29.3
38.1
±8.2
43.37.8% 54.4% 6,976105,434418 (9.9)707 (16.8)8.0Public
LTTSC-CRF
59. using public detections
36.8
37.6
±9.9
42.19.6% 55.2% 11,969101,343481 (10.8)1,012 (22.8)0.6Public
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
GM_PHD_N1T
60. online method using public detections
40.9
33.3
±8.9
25.55.5% 56.0% 1,750116,4523,499 (96.8)3,594 (99.5)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD Filter for Multiple Target, Multiple Type Visual Tracking. In CoRR, 2017.
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
SAD_T
61. online method using public detections
34.4
43.4
±16.2
44.011.7% 59.3% 15,34187,086763 (14.6)1,832 (35.1)11.4Public
Anonymous submission
GMPHD_HDA
62. online method using public detections
33.1
30.5
±6.9
33.44.6% 59.7% 5,169120,970539 (16.0)731 (21.7)13.6Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
CppSORT
63. online method using public detections
38.3
31.5
±9.0
27.74.3% 59.9% 3,048120,2781,587 (46.6)2,239 (65.8)687.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
DRT
64. online method using public detections
33.7
34.7
±11.4
41.16.3% 61.8% 6,992111,617460 (11.9)1,127 (29.1)6.2Public
Anonymous submission
TDP
65. online method using public detections
37.2
33.9
±10.2
40.46.2% 62.2% 6,709113,249480 (12.7)1,105 (29.2)9.7Public
Anonymous submission
DWET
66. online method using public detections
36.3
32.2
±10.4
38.36.2% 63.0% 7,297115,780603 (16.5)1,184 (32.4)11.3Public
Anonymous submission
DP_NMS
67. using public detections
31.9
26.2
±9.3
31.24.1% 67.5% 3,689130,557365 (12.9)638 (22.5)5.9Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
JPDA_m
68. using public detections
32.9
26.2
±6.1
0.04.1% 67.5% 3,689130,549365 (12.9)638 (22.5)22.2Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
cm_test
69. online method using public detections
32.8
35.4
±20.2
40.36.5% 71.4% 4,427112,889402 (10.6)1,176 (30.9)1.6Public
Anonymous submission

Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(51.9% MOTA)

MOT16-06

MOT16-06

(42.9% MOTA)

MOT16-07

MOT16-07

(37.4% MOTA)

...

...

MOT16-08

MOT16-08

(29.4% MOTA)

MOT16-14

MOT16-14

(23.2% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.