MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
DP_NMS
1. using public detections
32.6
26.2
±9.3
31.24.1% 67.5% 3,689130,557365 (12.9)638 (22.5)5.9Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
JPDA_m
2. using public detections
33.6
26.2
±6.1
0.04.1% 67.5% 3,689130,549365 (12.9)638 (22.5)22.2Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
SMOT
3. using public detections
53.9
29.7
±7.3
0.05.3% 47.7% 17,426107,5523,108 (75.8)4,483 (109.3)0.2Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
CMRZF
4. using public detections
35.8
30.4
±10.8
29.42.9% 70.5% 1,421124,4831,030 (32.5)733 (23.1)16.9Public
GMPHD_HDA
5. online method using public detections
33.9
30.5
±6.9
33.44.6% 59.7% 5,169120,970539 (16.0)731 (21.7)13.6Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
CppSORT
6. online method using public detections
39.9
31.5
±9.0
27.74.3% 59.9% 3,048120,2781,587 (46.6)2,239 (65.8)687.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
DWET
7. online method using public detections
36.3
32.2
±10.4
38.36.2% 63.0% 7,297115,780603 (16.5)1,184 (32.4)11.3Public
Anonymous submission
CEM
8. using public detections
37.8
33.2
±7.9
0.07.8% 54.4% 6,837114,322642 (17.2)731 (19.6)0.3Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
GM_PHD_N1T
9. online method using public detections
42.2
33.3
±8.9
25.55.5% 56.0% 1,750116,4523,499 (96.8)3,594 (99.5)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD Filter for Multiple Target, Multiple Type Visual Tracking. In CoRR, 2017.
TBD
10. using public detections
47.3
33.7
±9.2
0.07.2% 54.2% 5,804112,5872,418 (63.2)2,252 (58.9)1.3Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
ARM16
11. using public detections
34.7
35.3
±7.7
40.312.8% 38.5% 23,52092,1712,334 (47.2)3,516 (71.1)5.9Public
Anonymous submission
DRT
12. online method using public detections
35.3
35.6
±11.9
44.28.2% 55.6% 12,863104,127517 (12.1)1,439 (33.6)6.2Public
Anonymous submission
LP2D
13. using public detections
35.8
35.7
±10.1
34.28.7% 50.7% 5,084111,163915 (23.4)1,264 (32.4)49.3Public
MOT baseline: Linear programming on 2D image coordinates.
HISP_T
14. online method using public detections
42.3
35.9
±8.5
28.97.8% 50.1% 6,412107,9182,594 (63.6)2,298 (56.3)4.8Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
JCmin_MOT
15. online method using public detections
32.7
36.7
±9.1
36.27.5% 54.4% 2,936111,890667 (17.3)831 (21.5)14.8Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
LTTSC-CRF
16. using public detections
37.6
37.6
±9.9
42.19.6% 55.2% 11,969101,343481 (10.8)1,012 (22.8)0.6Public
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
Q_lc
17. online method using public detections
34.7
37.9
±10.3
48.314.2% 37.9% 19,33393,157697 (14.3)1,918 (39.2)0.3Public
Anonymous submission
GMMCP
18. using public detections
40.3
38.1
±7.8
35.58.6% 50.9% 6,607105,315937 (22.2)1,669 (39.5)0.5Public
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
HAM_ACT16
19. online method using public detections
30.6
38.1
±8.2
43.37.8% 54.4% 6,976105,434418 (9.9)707 (16.8)6.4Public
Anonymous submission
OVBT
20. online method using public detections
46.9
38.4
±8.8
37.87.5% 47.3% 11,51799,4631,321 (29.1)2,140 (47.1)0.3Public
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
EAMTT_pub
21. online method using public detections
36.3
38.8
±8.5
42.47.9% 49.1% 8,114102,452965 (22.0)1,657 (37.8)11.8Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
SDMT
22. online method using public detections
33.3
39.6
±8.3
42.311.7% 49.1% 11,13098,343602 (13.1)772 (16.8)19.8Public
Anonymous submission
STFP
23. online method using public detections
39.1
39.8
±8.9
47.413.0% 41.4% 12,11896,755950 (20.2)2,630 (56.0)0.4Public
Anonymous submission
ReIDT
24. online method using public detections
34.3
40.0
±10.3
43.313.6% 38.1% 17,08891,2411,064 (21.3)2,274 (45.5)6.5Public
Anonymous submission
FullTest
25. online method using public detections
33.2
40.7
±32.6
44.811.6% 42.3% 14,35492,6501,136 (23.1)3,864 (78.6)236.8Public
Anonymous submission
PRT
26. online method using public detections
33.8
40.8
±13.0
44.213.7% 38.3% 15,14391,7921,051 (21.2)2,210 (44.5)6.2Public
Anonymous submission
VOFNet
27. online method using public detections
34.9
40.9
±8.3
46.79.7% 47.0% 4,750102,277684 (15.6)4,310 (98.2)24.9Public
Anonymous submission
LINF1
28. using public detections
30.0
41.0
±9.5
45.711.6% 51.3% 7,89699,224430 (9.4)963 (21.1)4.2Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
OVMOT
29. online method using public detections
32.9
41.9
±8.8
50.115.0% 43.0% 10,71294,510626 (13.0)2,008 (41.7)0.4Public
Anonymous submission
TBNMF16
30. online method using public detections
37.0
42.0
±9.2
37.510.4% 44.9% 4,96699,7781,085 (24.0)1,400 (30.9)4.5Public
Anonymous submission
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
TTAR
31. using public detections
34.6
42.2
±8.0
37.210.4% 47.8% 4,87299,550909 (20.0)945 (20.8)19.7Public
Anonymous submission
EMOT
32. online method using public detections
30.9
43.0
±8.8
49.213.8% 42.7% 9,52193,672712 (14.6)1,903 (39.1)0.4Public
Anonymous submission
PRMOT
33. using public detections
34.6
43.1
±9.3
44.814.5% 41.8% 10,49592,1741,145 (23.2)1,999 (40.4)0.6Public
Anonymous submission
oICF
34. online method using public detections
30.8
43.2
±10.2
49.311.3% 48.5% 6,65196,515381 (8.1)1,404 (29.8)0.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
HSFSC
35. online method using public detections
31.3
43.3
±9.1
41.612.0% 43.9% 5,55896,996874 (18.7)1,482 (31.7)3.0Public
Anonymous submission
RMFP
36. online method using public detections
33.1
43.4
±9.2
50.414.9% 44.0% 7,55995,015682 (14.2)1,999 (41.7)0.3Public
Anonymous submission
SAD_T
37. online method using public detections
34.8
43.4
±16.2
44.011.7% 59.3% 15,34187,086763 (14.6)1,832 (35.1)11.4Public
Anonymous submission
LFNF16
38. using public detections
31.3
43.6
±11.0
41.613.3% 45.7% 6,61695,363836 (17.5)938 (19.7)0.6Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
deepS2
39. using public detections
26.5
43.6
±8.1
40.415.4% 41.9% 8,81993,095871 (17.8)851 (17.4)0.7Public
ID 32
STbase
40. using public detections
30.5
43.7
±9.2
50.815.2% 43.0% 8,89193,036662 (13.5)1,844 (37.7)0.4Public
Anonymous submission
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
overMOT
41. online method using public detections
30.1
43.7
±9.3
50.815.2% 43.0% 8,89193,036662 (13.5)1,844 (37.7)0.4Public
Anonymous submission
PSMT
42. using public detections
33.3
43.9
±9.3
50.715.4% 42.8% 9,10992,271944 (19.1)2,036 (41.2)0.3Public
Anonymous submission
CDA_DDALv2
43. online method using public detections
29.9
43.9
±7.8
45.110.7% 44.4% 6,45095,175676 (14.1)1,795 (37.6)0.5Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
QuadMOT16
44. using public detections
30.0
44.1
±9.4
38.314.6% 44.9% 6,38894,775745 (15.5)1,096 (22.8)1.8Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
TripletT
45. online method using public detections
29.3
44.6
±9.7
48.812.6% 46.6% 2,72597,948422 (9.1)1,093 (23.6)0.1Public
Anonymous submission
TBSS
46. online method using public detections
30.9
44.6
±9.3
42.612.3% 43.9% 4,13696,128790 (16.7)1,419 (30.0)3.0Public
Anonymous submission
SAC
47. online method using public detections
30.6
44.6
±9.2
42.712.1% 43.6% 3,92996,285795 (16.8)1,414 (30.0)1.1Public
Anonymous submission
DCCRF16
48. online method using public detections
29.5
44.8
±9.8
39.714.1% 42.3% 5,61394,133968 (20.0)1,378 (28.5)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
ONEEC
49. online method using public detections
24.3
45.3
±9.5
53.716.3% 42.4% 8,42390,821550 (11.0)1,574 (31.4)0.3Public
Anonymous submission
EDMT
50. using public detections
19.3
45.3
±9.1
47.917.0% 39.9% 11,12287,890639 (12.3)946 (18.3)1.8Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
STMOT
51. using public detections
26.3
45.4
±9.2
53.316.3% 42.8% 8,07190,883561 (11.2)1,548 (30.9)0.3Public
Anonymous submission
TripT
52. online method using public detections
25.6
45.6
±8.3
49.412.9% 46.9% 1,79396,970432 (9.2)904 (19.3)0.6Public
Anonymous submission
MHT_DAM
53. using public detections
21.7
45.8
±8.9
46.116.2% 43.2% 6,41291,758590 (11.9)781 (15.7)0.8Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
ASSMOT
54. using public detections
19.8
46.0
±9.3
54.416.6% 42.7% 8,04589,959538 (10.6)1,623 (32.0)0.4Public
Anonymous submission
STAM16
55. online method using public detections
27.3
46.0
±9.1
50.014.6% 43.6% 6,89591,117473 (9.5)1,422 (28.4)0.2Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
DMMOT
56. online method using public detections
18.8
46.1
±11.1
54.817.4% 42.7% 7,90989,874532 (10.5)1,616 (31.9)0.5Public
Anonymous submission
JMC
57. using public detections
20.0
46.3
±9.0
46.315.5% 39.7% 6,37390,914657 (13.1)1,114 (22.2)0.8Public
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
NOMT
58. using public detections
14.9
46.4
±9.9
53.318.3% 41.4% 9,75387,565359 (6.9)504 (9.7)2.6Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
IMWIS
59. using public detections
21.8
47.0
±9.3
41.816.2% 41.4% 4,84290,901868 (17.3)904 (18.0)0.7Public
Anonymous submission
MCjoint
60. using public detections
16.8
47.1
±10.8
52.320.4% 46.9% 6,70389,368370 (7.3)598 (11.7)0.6Public
M. Keuper, S. Tang, Z. Yu, B. Andres, T. Brox, B. Schiele. A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects. In CoRR, 2016.
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
AMIR
61. online method using public detections
20.9
47.2
±7.7
46.314.0% 41.6% 2,68192,856774 (15.8)1,675 (34.1)1.0Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
eHAF16
62. using public detections
18.1
47.2
±16.8
52.418.6% 42.8% 12,58683,107542 (10.0)787 (14.5)0.5Public
TCSVT-02141-2018
Adaptation
63. using public detections
13.2
47.6
±10.6
47.417.0% 40.4% 5,78389,168627 (12.3)761 (14.9)2.5Public
Anonymous submission
NLLMPa
64. using public detections
15.4
47.6
±10.6
47.317.0% 40.4% 5,84489,093629 (12.3)768 (15.0)8.3Public
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
MOTDT
65. online method using public detections
20.3
47.6
±8.2
50.915.2% 38.3% 9,25385,431792 (14.9)1,858 (35.0)20.6Public
Anonymous ICME submission
FWT
66. using public detections
21.3
47.8
±9.4
44.319.1% 38.2% 8,88685,487852 (16.0)1,534 (28.9)0.6Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
GCRA
67. using public detections
19.0
48.2
±8.3
48.612.9% 41.1% 5,10488,586821 (16.0)1,117 (21.7)2.8Public
C.Ma, C.Yang, F.Yang, Y.Zhuang, Z.Zhang, H.Jia, D.Xie. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. In ICME 2018.
LMP
68. using public detections
14.2
48.8
±9.8
51.318.2% 40.1% 6,65486,245481 (9.1)595 (11.3)0.5Public
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
KCF16
69. online method using public detections
22.1
48.8
±9.6
47.215.8% 38.1% 5,87586,567906 (17.3)1,116 (21.2)0.1Public
Paper ID 2988
AFN
70. using public detections
17.9
49.0
±10.2
48.219.1% 35.7% 9,50882,506899 (16.4)1,383 (25.3)0.6Public
Anonymous submission
TrackerAvg Rank MOTAIDF1MTMLFPFNID Sw.FragHzDetector
TPM
71. using public detections
20.5
49.1
±9.1
46.920.0% 38.9% 9,03883,031679 (12.5)850 (15.6)0.8Public
Anonymous submission

Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(51.6% MOTA)

MOT16-06

MOT16-06

(43.8% MOTA)

MOT16-12

MOT16-12

(38.0% MOTA)

...

...

MOT16-08

MOT16-08

(29.6% MOTA)

MOT16-14

MOT16-14

(23.9% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.