MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
KCF16
1. online method using public detections
44.3
48.8
±9.6
47.215.8% 38.1% 5,87586,567906 (17.3)1,116 (21.2)0.1Public
P. Chu, H. Fan, C. Tan, H. Ling. Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment. In WACV, 2019.
DCCRF16
2. online method using public detections
53.5
44.8
±9.8
39.714.1% 42.3% 5,61394,133968 (20.0)1,378 (28.5)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
STAM16
3. online method using public detections
52.2
46.0
±9.1
50.014.6% 43.6% 6,89591,117473 (9.5)1,422 (28.4)0.2Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
SMOT
4. using public detections
82.9
29.7
±7.3
0.05.3% 47.7% 17,426107,5523,108 (75.8)4,483 (109.3)0.2Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
OVBT
5. online method using public detections
73.6
38.4
±8.8
37.87.5% 47.3% 11,51799,4631,321 (29.1)2,140 (47.1)0.3Public
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
DMAN
6. online method using public detections
42.3
46.1
±11.1
54.817.4% 42.7% 7,90989,874532 (10.5)1,616 (31.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
CEM
7. using public detections
58.9
33.2
±7.9
0.07.8% 54.4% 6,837114,322642 (17.2)731 (19.6)0.3Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
SCNet
8. online method using public detections
47.1
50.0
±8.9
51.115.5% 34.1% 10,52679,755866 (15.4)2,141 (38.1)0.3Public
Anonymous submission
oICF
9. online method using public detections
53.8
43.2
±10.2
49.311.3% 48.5% 6,65196,515381 (8.1)1,404 (29.8)0.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
ENFT16
10. using public detections
26.4
50.3
±8.3
55.019.2% 39.8% 8,34181,843490 (8.9)754 (13.7)0.4Public
BUAA
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
CDA_DDALv2
11. online method using public detections
53.3
43.9
±7.8
45.110.7% 44.4% 6,45095,175676 (14.1)1,795 (37.6)0.5Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
LMP
12. using public detections
33.3
48.8
±9.8
51.318.2% 40.1% 6,65486,245481 (9.1)595 (11.3)0.5Public
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
eHAF16
13. using public detections
37.4
47.2
±16.8
52.418.6% 42.8% 12,58683,107542 (10.0)787 (14.5)0.5Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
ASTT
14. using public detections
38.8
47.2
±9.6
44.316.3% 41.6% 4,68090,877633 (12.6)814 (16.2)0.5Public
Yi Tao el al., “Adaptive Spatio-temporal Model Based Multiple Object Tracking Considering a Moving Camera[C]”, International Conference on Universal Village (UV), 2018.
GMMCP
15. using public detections
64.1
38.1
±7.8
35.58.6% 50.9% 6,607105,315937 (22.2)1,669 (39.5)0.5Public
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
MHT_ReID
16. using public detections
58.2
27.1
±47.2
36.430.6% 31.4% 13,068118,8291,071 (30.8)1,141 (32.8)0.5Public
Anonymous submission
MHT___ReID
17. using public detections
37.3
56.4
±11.6
54.239.7% 17.4% 23,79154,1691,478 (21.0)1,547 (22.0)0.5Public
Anonymous submission
AFN
18. using public detections
36.5
49.0
±10.2
48.219.1% 35.7% 9,50882,506899 (16.4)1,383 (25.3)0.6Public
H. Shen, L. Huang, C. Huang, W. Xu. Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. In CoRR, 2018.
LTTSC-CRF
19. using public detections
61.4
37.6
±9.9
42.19.6% 55.2% 11,969101,343481 (10.8)1,012 (22.8)0.6Public
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
MCjoint
20. using public detections
36.2
47.1
±10.8
52.320.4% 46.9% 6,70389,368370 (7.3)598 (11.7)0.6Public
}@article{DBLP:journals/corr/KeuperTYABS16, author = {Margret Keuper and Siyu Tang and Zhongjie Yu and Bjoern Andres and Thomas Brox and Bernt Schiele}, title = {A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects}, journal = {CoRR}, volume = {abs/1607.06317}, year = {2016}, url = {http://arxiv.org/abs/1607.06317}, timestamp = {Wed, 07 Jun 2017 14:41:31 +0200}, biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/KeuperTYABS16}, bibsource = {dblp computer science bibliography, http://dblp.org} }
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
FWT
21. using public detections
45.0
47.8
±9.4
44.319.1% 38.2% 8,88685,487852 (16.0)1,534 (28.9)0.6Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
LFNF16
22. using public detections
56.2
43.6
±11.0
41.613.3% 45.7% 6,61695,363836 (17.5)938 (19.7)0.6Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
deepS2
23. using public detections
41.8
46.0
±8.2
46.515.5% 42.6% 5,12492,697693 (14.1)759 (15.4)0.7Public
ID 32
eTC
24. using public detections
32.9
49.2
±9.1
56.117.3% 40.3% 8,40083,702606 (11.2)882 (16.3)0.7Public
G. Wang, Y. Wang, H. Zhang, R. Gu, J. Hwang. Exploit the connectivity: Multi-object tracking with trackletnet. In Proceedings of the 27th ACM International Conference on Multimedia, 2019.
HCC
25. using public detections
29.0
49.3
±10.2
50.717.8% 39.9% 5,33386,795391 (7.5)535 (10.2)0.8Public
L. Ma, S. Tang, M. Black, L. Gool. Customized Multi-Person Tracker. In Computer Vision -- ACCV 2018, 2018.
TPM
26. using public detections
32.8
51.3
±9.3
47.918.7% 40.8% 2,70185,504569 (10.7)707 (13.3)0.8Public
Anonymous submission
MHT_DAM
27. using public detections
44.6
45.8
±8.9
46.116.2% 43.2% 6,41291,758590 (11.9)781 (15.7)0.8Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
JMC
28. using public detections
43.8
46.3
±9.0
46.315.5% 39.7% 6,37390,914657 (13.1)1,114 (22.2)0.8Public
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
siameseCos
29. using public detections
36.5
49.4
±8.4
49.819.1% 39.4% 6,28185,384679 (12.8)823 (15.5)0.8Public
In preparation
ReTrack16
30. using public detections
28.4
57.0
±12.3
54.221.9% 34.3% 4,44673,258688 (11.5)1,543 (25.8)0.8Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
RAR16pub
31. online method using public detections
53.5
45.9
±9.7
48.813.2% 41.9% 6,87191,173648 (13.0)1,992 (39.8)0.9Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
AMIR
32. online method using public detections
44.3
47.2
±7.7
46.314.0% 41.6% 2,68192,856774 (15.8)1,675 (34.1)1.0Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
TBD
33. using public detections
74.3
33.7
±9.2
0.07.2% 54.2% 5,804112,5872,418 (63.2)2,252 (58.9)1.3Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
SRPN16
34. online method using public detections
48.8
48.2
±8.5
51.314.2% 36.8% 7,76785,973790 (14.9)2,006 (38.0)1.4Public
Anonymous submission
MTDF
35. online method using public detections
59.2
45.7
±11.2
40.114.1% 36.4% 12,01884,9701,987 (37.2)3,377 (63.2)1.5Public
Z. Fu, F. Angelini, J. Chambers, S. Naqvi. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. In IEEE Transactions on Multimedia, 2019.
CRF_RNN16
36. using public detections
30.2
49.0
±7.2
53.918.1% 35.8% 8,49583,838621 (11.5)1,252 (23.2)1.5Public
Anonymous submission
CRF_TRACK
37. using public detections
27.9
50.3
±7.9
54.418.3% 35.7% 7,14882,746702 (12.9)1,387 (25.4)1.5Public
Anonymous submission
CRFTrack16
38. using public detections
28.6
50.3
±7.9
54.418.3% 35.7% 7,14882,746702 (12.9)1,387 (25.4)1.5Public
Anonymous submission
Tracktor16
39. online method using public detections
31.6
54.4
±12.0
52.519.0% 36.9% 3,28079,149682 (12.1)1,480 (26.2)1.5Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
MHT_bLSTM6
40. using public detections
55.3
42.1
±9.7
47.814.9% 44.4% 11,63793,172753 (15.4)1,156 (23.6)1.8Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
RTT
41. online method using public detections
43.2
49.9
±8.0
49.319.0% 32.8% 9,92780,406955 (17.1)2,247 (40.2)1.8Public
Anonymous submission
EDMT
42. using public detections
43.0
45.3
±9.1
47.917.0% 39.9% 11,12287,890639 (12.3)946 (18.3)1.8Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
QuadMOT16
43. using public detections
54.9
44.1
±9.4
38.314.6% 44.9% 6,38894,775745 (15.5)1,096 (22.8)1.8Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
LSST16O
44. online method using public detections
41.4
49.2
±10.2
56.513.4% 41.4% 7,18784,875606 (11.3)2,497 (46.7)2.0Public
Anonymous submission
MEN
45. online method using public detections
36.8
50.0
±9.1
52.815.0% 37.0% 6,11784,271706 (13.1)1,797 (33.4)2.0Public
Anonymous submission
NOMT
46. using public detections
35.8
46.4
±9.9
53.318.3% 41.4% 9,75387,565359 (6.9)504 (9.7)2.6Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
GCRA
47. using public detections
41.8
48.2
±8.3
48.612.9% 41.1% 5,10488,586821 (16.0)1,117 (21.7)2.8Public
C. Ma, C. Yang, F. Yang, Y. Zhuang, Z. Zhang, H. Jia, X. Xie. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. In ICME, 2018.
MOTPP16
48. using public detections
30.1
50.5
±9.7
47.219.6% 39.4% 5,93983,694638 (11.8)823 (15.2)3.0Public
Anonymous submission
TBSS
49. online method using public detections
55.8
44.6
±9.3
42.612.3% 43.9% 4,13696,128790 (16.7)1,419 (30.0)3.0Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
GM_PHD_e17
50. online method using public detections
67.1
33.8
±8.9
25.36.3% 54.9% 1,766115,1303,778 (102.5)3,874 (105.1)3.3Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
HISP_DAL
51. online method using public detections
63.3
37.4
±8.8
30.57.6% 50.9% 3,222108,8652,101 (52.1)2,151 (53.4)3.3Public
N. Baisa. Robust Online Multi-target Visual Tracking using a HISP Filter with Discriminative Deep Appearance Learning. In CoRR, 2019.
YOONKJ16
52. online method using public detections
46.1
47.0
±8.4
50.116.5% 41.8% 7,90188,179627 (12.1)945 (18.3)3.5Public
Anonymous submission
GM_PHD_DAL
53. online method using public detections
65.6
35.1
±9.1
26.67.0% 51.4% 2,350111,8864,047 (104.8)5,338 (138.2)3.5Public
N. Baisa. Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning. In 22nd International Conference on Information Fusion, 2019.
GM_PHD_Dl
54. online method using public detections
66.5
34.3
±9.1
20.57.1% 51.5% 2,350111,8865,605 (145.1)5,357 (138.7)3.5Public
Anonymous submission
HDTR
55. using public detections
23.4
53.6
±8.7
46.621.2% 37.0% 4,71479,353618 (10.9)833 (14.7)3.6Public
LINF1
56. using public detections
51.3
41.0
±9.5
45.711.6% 51.3% 7,89699,224430 (9.4)963 (21.1)4.2Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
INTERA_MOT
57. using public detections
40.0
45.4
±8.6
47.718.1% 38.7% 13,40785,547600 (11.3)930 (17.5)4.3Public
L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao, T. Huang. Interacting Tracklets for Multi-object Tracking. In IEEE Transactions on Image Processing, 2018.
OST16
58. online method using public detections
59.8
41.5
±9.2
39.110.7% 45.6% 5,91999,7091,056 (23.3)1,487 (32.8)4.7Public
Anonymous submission
TLMHT
59. using public detections
36.7
48.7
±8.6
55.315.7% 44.5% 6,63286,504413 (7.9)642 (12.2)4.8Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
HISP_T
60. online method using public detections
65.5
35.9
±8.5
28.97.8% 50.1% 6,412107,9182,594 (63.6)2,298 (56.3)4.8Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
UTA
61. online method using public detections
37.6
50.6
±7.9
50.418.3% 33.5% 7,75281,584722 (13.1)2,196 (39.7)5.0Public
Anonymous submission
AM_ADM
62. online method using public detections
56.6
40.1
±10.1
43.87.1% 46.2% 8,50399,891789 (17.5)1,736 (38.4)5.8Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
DP_NMS
63. using public detections
51.1
26.2
±9.3
31.24.1% 67.5% 3,689130,557365 (12.9)638 (22.5)5.9Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
CMT16
64. using public detections
24.9
49.8
±9.0
59.216.6% 43.6% 9,22981,882365 (6.6)617 (11.2)6.3Public
#Submission: TIP-21190-2019
DD_TAMA16
65. online method using public detections
38.6
46.2
±8.4
49.414.1% 44.0% 5,12692,367598 (12.1)1,127 (22.8)6.5Public
Y. Yoon, D. Kim, K. Yoon, Y. Song, M. Jeon. Online Multiple Pedestrian Tracking using Deep Temporal Appearance Matching Association. In arXiv:1907.00831, 2019.
MTT_TPR
66. using public detections
32.4
54.9
±11.7
53.118.7% 34.8% 4,13076,6731,447 (25.0)3,693 (63.7)6.7Public
Anonymous submission
PV
67. online method using public detections
41.9
50.4
±10.1
50.814.9% 38.9% 2,60086,7801,061 (20.2)3,181 (60.7)7.3Public
Anonymous submission
HAM_ACT16
68. online method using public detections
49.7
38.1
±8.2
43.37.8% 54.4% 6,976105,434418 (9.9)707 (16.8)8.0Public
NLLMPa
69. using public detections
36.7
47.6
±10.6
47.317.0% 40.4% 5,84489,093629 (12.3)768 (15.0)8.3Public
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
PHD_GSDL16
70. online method using public detections
61.1
41.0
±8.9
43.111.3% 41.5% 6,49899,2571,810 (39.7)3,650 (80.1)8.3Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
D_cost16
71. online method using public detections
49.2
39.9
±9.1
35.38.7% 50.2% 1,133107,586790 (19.3)824 (20.1)8.5Public
Anonymous submission
DAST
72. online method using public detections
36.2
48.9
±8.4
53.215.2% 36.2% 9,98782,427838 (15.3)1,936 (35.3)8.7Public
Anonymous submission
JCSTD
73. online method using public detections
50.0
47.4
±8.3
41.114.4% 36.4% 8,07686,6381,266 (24.1)2,697 (51.4)8.8Public
W. Tian, M. Lauer, L. Chen. Online Multi-Object Tracking Using Joint Domain Information in Traffic Scenarios. In IEEE Transactions on Intelligent Transportation Systems, 2019.
GM_PHD_N1T
74. online method using public detections
65.3
33.3
±8.9
25.55.5% 56.0% 1,750116,4523,499 (96.8)3,594 (99.5)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019.
DeepMP16
75. using public detections
31.5
48.7
±10.3
50.115.0% 43.6% 4,11188,862535 (10.4)873 (17.0)9.9Public
Anonymous submission
PHD_T
76. online method using public detections
57.3
40.3
±9.0
48.311.6% 43.1% 7,147100,895815 (18.2)2,446 (54.8)9.9Public
Anonymous submission
DpTrack
77. using public detections
27.6
59.3
±18.7
52.827.4% 24.6% 8,56663,6032,045 (31.4)1,555 (23.9)10.4Public
Anonymous submission
AOReid
78. online method using public detections
37.4
48.2
±8.7
50.815.3% 36.8% 10,28383,301821 (15.1)1,963 (36.1)11.2Public
Anonymous submission
EAMTT_pub
79. online method using public detections
58.6
38.8
±8.5
42.47.9% 49.1% 8,114102,452965 (22.0)1,657 (37.8)11.8Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
MOTPP
80. using public detections
37.6
48.3
±8.7
45.418.6% 40.1% 7,37886,181661 (12.5)834 (15.8)11.8Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MOT_FILTER
81. using public detections
32.3
50.2
±12.9
46.817.9% 39.7% 5,26784,812664 (12.4)978 (18.3)11.8Public
Anonymous submission
MOTHPCLEAN
82. using public detections
28.9
50.4
±9.4
47.019.1% 39.5% 5,33284,505657 (12.2)862 (16.1)11.8Public
Anonymous submission
MOTPPF
83. using public detections
33.2
48.4
±8.8
48.519.1% 39.8% 9,15284,266595 (11.1)802 (14.9)11.8Public
Anonymous submission
MOTHP
84. using public detections
33.9
49.1
±9.1
46.920.0% 38.9% 9,03883,031679 (12.5)850 (15.6)11.8Public
Anonymous submission
MMHT16
85. online method using public detections
37.3
49.9
±9.8
47.316.2% 40.7% 6,11084,455823 (15.3)1,289 (24.0)12.4Public
Anonymous submission
OMHT16
86. online method using public detections new
40.0
49.8
±9.9
46.716.1% 40.4% 6,24484,342888 (16.5)1,332 (24.8)12.4Public
Anonymous submission
TLO16
87. online method using public detections new
38.8
50.1
±9.9
48.016.3% 40.7% 5,61584,626788 (14.7)1,296 (24.2)12.4Public
Anonymous submission
STRN_MOT16
88. using public detections
41.0
48.5
±8.5
53.917.0% 34.9% 9,03884,178747 (13.9)2,919 (54.2)13.5Public
J. Xu, Y. Cao, Z. Zhang, H. Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. In ICCV, 2019.
GMPHD_HDA
89. online method using public detections
51.8
30.5
±6.9
33.44.6% 59.7% 5,169120,970539 (16.0)731 (21.7)13.6Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
JCmin_MOT
90. online method using public detections
51.3
36.7
±9.1
36.27.5% 54.4% 2,936111,890667 (17.3)831 (21.5)14.8Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
NOTA
91. using public detections
29.3
49.8
±8.3
55.317.9% 37.7% 7,24883,614614 (11.3)1,372 (25.3)19.2Public
L. Chen, H. Ai, R. Chen, Z. Zhuang. Aggregate Tracklet Appearance Features for Multi-Object Tracking. In IEEE Signal Processing Letters, 2019.
RNN_A_P
92. online method using public detections
70.6
34.0
±8.6
33.77.9% 51.0% 8,562109,2692,479 (61.9)3,393 (84.7)19.7Public
Anonymous submission
TestUnsup
93. online method using public detections
52.8
41.5
±9.0
44.913.7% 43.5% 12,59693,404643 (13.2)796 (16.3)19.7Public
Multi Object Tracking using Deep Structural Cost Minimization in Data Association
SDMT
94. online method using public detections
54.0
39.6
±8.3
42.311.7% 49.1% 11,13098,343602 (13.1)772 (16.8)19.8Public
M. Thoreau, N. Kottege. Deep Similarity Metric Learning for Real-Time Pedestrian Tracking. In arXiv, 2018.
MOTDT
95. online method using public detections
42.5
47.6
±8.2
50.915.2% 38.3% 9,25385,431792 (14.9)1,858 (35.0)20.6Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
JPDA_m
96. using public detections
51.7
26.2
±6.1
0.04.1% 67.5% 3,689130,549365 (12.9)638 (22.5)22.2Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
pairwise16
97. using public detections
28.9
50.0
±65.9
52.419.4% 38.7% 10,99579,568628 (11.1)939 (16.7)22.3Public
Anonymous submission
STCG
98. using public detections
32.3
49.3
±8.6
52.016.2% 41.4% 6,88684,979515 (9.6)775 (14.5)22.3Public
Anonymous submission
ENFT
99. using public detections
22.3
50.0
±8.2
54.617.8% 41.1% 8,21482,541479 (8.8)724 (13.2)22.3Public
Anonymous submission
test_trker
100. using public detections
54.7
0.0
±0.0
0.00.0% 100.0% 7182,3260 (nan)0 (nan)22.3Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
retrack
101. online method using public detections
41.8
49.2
±14.2
46.116.5% 36.1% 6,49585,214915 (17.2)2,078 (39.0)22.3Public
Anonymous submission
KVIOU16
102. using public detections new
57.3
33.4
±9.7
32.65.9% 59.6% 2,764117,971760 (21.5)1,473 (41.7)29.6Public
Anonymous submission
DCOR
103. online method using public detections
59.7
28.3
±9.0
21.73.4% 63.9% 1,618128,345849 (28.7)2,592 (87.5)32.9Public
Anonymous submission
DS_v2
104. using public detections
23.4
59.3
±12.9
57.524.2% 29.1% 7,46565,810887 (13.9)2,738 (42.8)39.4Public
Anonymous submission
LP2D
105. using public detections
55.3
35.7
±10.1
34.28.7% 50.7% 5,084111,163915 (23.4)1,264 (32.4)49.3Public
MOT baseline: Linear programming on 2D image coordinates.
PMPTracker
106. online method using public detections
62.6
40.3
±11.7
38.210.4% 42.0% 10,07197,5241,343 (28.9)2,764 (59.4)148.0Public
Light version of PTZ camera Mutiple People Tracker
EAGS16
107. using public detections
32.8
47.4
±10.4
50.117.3% 42.7% 8,36986,931575 (11.0)913 (17.5)197.3Public
H. Sheng, X. Zhang, Y. Zhang, Y. Wu, J. Chen. Enhanced Association with Supervoxels in Multiple Hypothesis Tracking. In IEEE Access, 2018.
CppSORT
108. online method using public detections
59.8
31.5
±9.0
27.74.3% 59.9% 3,048120,2781,587 (46.6)2,239 (65.8)687.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.

Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(52.5% MOTA)

MOT16-06

MOT16-06

(45.4% MOTA)

MOT16-07

MOT16-07

(39.5% MOTA)

...

...

MOT16-08

MOT16-08

(30.3% MOTA)

MOT16-14

MOT16-14

(25.2% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.