MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!


Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

TrackerMOTAIDF1MOTPMTMLFPFNRecallPrecisionFAFID Sw.Frag Hz
CEM
1. using public detections
33.2
±8.8
0.0
±0.0
75.8 59 (7.8)413 (54.4)6,837 114,322 37.3 90.9 1.2 642 (17.2)731 (19.6)5,919.0
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
CppSORT
2. online method using public detections
31.5
±9.0
27.7
±9.7
77.3 33 (4.3)455 (59.9)3,048 120,278 34.0 95.3 0.5 1,587 (46.6)2,239 (65.8)687.1
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
DP_NMS
3. using public detections
26.2
±9.7
31.2
±5.1
76.3 31 (4.1)512 (67.5)3,689 130,557 28.4 93.3 0.6 365 (12.9)638 (22.5)212.6
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
EAGS16
4. using public detections
47.4
±8.6
50.1
±7.4
75.9 131 (17.3)324 (42.7)8,369 86,931 52.3 91.9 1.4 575 (11.0)913 (17.5)197.3
H. Sheng, X. Zhang, Y. Zhang, Y. Wu, J. Chen. Enhanced Association with Supervoxels in Multiple Hypothesis Tracking. In IEEE Access, 2018.
PMPTracker
5. online method using public detections
40.3
±11.7
38.2
±8.4
73.3 79 (10.4)319 (42.0)10,071 97,524 46.5 89.4 1.7 1,343 (28.9)2,764 (59.4)148.0
Light version of PTZ camera Mutiple People Tracker
LP2D
6. using public detections
35.7
±12.3
34.2
±9.3
75.8 66 (8.7)385 (50.7)5,084 111,163 39.0 93.3 0.9 915 (23.4)1,264 (32.4)49.3
MOT baseline: Linear programming on 2D image coordinates.
GMPHD_ReId
7. online method using public detections
40.4
±9.3
49.7
±8.5
75.2 85 (11.2)329 (43.3)6,572 101,266 44.5 92.5 1.1 792 (17.8)2,529 (56.9)31.6
N. Baisa. Occlusion-robust Online Multi-object Visual Tracking using a GM-PHD Filter with a CNN-based Re-identification. In , 2019.
DN_MOT
8. online method using public detections
58.8
±9.3
60.8
±7.7
74.8 233 (30.7)139 (18.3)18,208 55,366 69.6 87.5 3.1 1,626 (23.4)2,904 (41.7)22.3
Anonymous submission
JPDA_m
9. using public detections
26.2
±8.8
0.0
±0.0
76.3 31 (4.1)512 (67.5)3,689 130,549 28.4 93.3 0.6 365 (12.9)638 (22.5)22.2
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
MOTDT
10. online method using public detections
47.6
±8.4
50.9
±5.5
74.8 115 (15.2)291 (38.3)9,253 85,431 53.1 91.3 1.6 792 (14.9)1,858 (35.0)20.6
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
TrackerMOTAIDF1MOTPMTMLFPFNRecallPrecisionFAFID Sw.Frag Hz
SDMT
11. online method using public detections
39.6
±8.1
42.3
±6.6
75.5 89 (11.7)373 (49.1)11,130 98,343 46.1 88.3 1.9 602 (13.1)772 (16.8)19.8
M. Thoreau, N. Kottege. Deep Similarity Metric Learning for Real-Time Pedestrian Tracking. In arXiv, 2018.
TestUnsup
12. online method using public detections
41.5
±9.0
44.9
±8.8
75.2 104 (13.7)330 (43.5)12,596 93,404 48.8 87.6 2.1 643 (13.2)796 (16.3)19.7
Multi Object Tracking using Deep Structural Cost Minimization in Data Association
NOTA
13. using public detections
49.8
±8.3
55.3
±5.4
74.5 136 (17.9)286 (37.7)7,248 83,614 54.1 93.2 1.2 614 (11.3)1,372 (25.3)19.2
L. Chen, H. Ai, R. Chen, Z. Zhuang. Aggregate Tracklet Appearance Features for Multi-Object Tracking. In IEEE Signal Processing Letters, 2019.
OTCD_1
14. online method using public detections
44.4
±10.8
45.6
±10.4
75.4 88 (11.6)361 (47.6)5,759 94,927 47.9 93.8 1.0 759 (15.8)1,787 (37.3)17.6
Q. Liu, B. Liu, Y. Wu, W. Li, N. Yu. Real-Time Online Multi-Object Tracking in Compressed Domain. In IEEE Access, 2019.
JCmin_MOT
15. online method using public detections
36.7
±9.1
36.2
±10.5
75.9 57 (7.5)413 (54.4)2,936 111,890 38.6 96.0 0.5 667 (17.3)831 (21.5)14.8
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
GMPHD_HDA
16. online method using public detections
30.5
±6.9
33.4
±5.4
75.4 35 (4.6)453 (59.7)5,169 120,970 33.6 92.2 0.9 539 (16.0)731 (21.7)13.6
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
STRN_MOT16
17. using public detections
48.5
±8.5
53.9
±7.1
73.7 129 (17.0)265 (34.9)9,038 84,178 53.8 91.6 1.5 747 (13.9)2,919 (54.2)13.5
J. Xu, Y. Cao, Z. Zhang, H. Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. In ICCV, 2019.
SCTrack_3L
18. using public detections
36.6
±9.7
36.5
±5.5
73.9 220 (29.0)120 (15.8)35,259 76,653 58.0 75.0 6.0 3,600 (62.1)3,724 (64.3)11.8
Anonymous submission
EAMTT_pub
19. online method using public detections
38.8
±8.6
42.4
±7.4
75.1 60 (7.9)373 (49.1)8,114 102,452 43.8 90.8 1.4 965 (22.0)1,657 (37.8)11.8
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
GM_PHD_N1T
20. online method using public detections
33.3
±9.0
25.5
±8.2
76.8 42 (5.5)425 (56.0)1,750 116,452 36.1 97.4 0.3 3,499 (96.8)3,594 (99.5)9.9
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019.
TrackerMOTAIDF1MOTPMTMLFPFNRecallPrecisionFAFID Sw.Frag Hz
DASOT16
21. online method using public detections
46.1
±9.2
49.4
±8.8
75.3 111 (14.6)316 (41.6)8,222 89,204 51.1 91.9 1.4 802 (15.7)2,057 (40.3)9.0
Q. Chu, W. Ouyang, B. Liu, F. Zhu, N. Yu. DASOT: A Unified Framework Integrating Data Association and Single Object Tracking for Online Multi-Object Tracking. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020.
JCSTD
22. online method using public detections
47.4
±8.3
41.1
±5.6
74.4 109 (14.4)276 (36.4)8,076 86,638 52.5 92.2 1.4 1,266 (24.1)2,697 (51.4)8.8
W. Tian, M. Lauer, L. Chen. Online Multi-Object Tracking Using Joint Domain Information in Traffic Scenarios. In IEEE Transactions on Intelligent Transportation Systems, 2019.
DAST
23. online method using public detections
48.9
±8.5
53.2
±5.5
74.9 115 (15.2)275 (36.2)9,987 82,427 54.8 90.9 1.7 838 (15.3)1,936 (35.3)8.7
Anonymous submission
PHD_GSDL16
24. online method using public detections
41.0
±8.9
43.1
±6.9
75.9 86 (11.3)315 (41.5)6,498 99,257 45.6 92.7 1.1 1,810 (39.7)3,650 (80.1)8.3
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
NLLMPa
25. using public detections
47.6
±10.6
47.3
±9.6
78.5 129 (17.0)307 (40.4)5,844 89,093 51.1 94.1 1.0 629 (12.3)768 (15.0)8.3
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
TARCA
26. online method using public detections
54.8
±12.5
57.3
±8.9
77.4 175 (23.1)291 (38.3)6,679 75,244 58.7 94.1 1.1 487 (8.3)828 (14.1)7.6
Anonymous submission
PV
27. online method using public detections
50.4
±10.3
50.8
±7.7
77.7 113 (14.9)295 (38.9)2,600 86,780 52.4 97.4 0.4 1,061 (20.2)3,181 (60.7)7.3
X. S. Li, Y. T. Liu, K. F. Wang. Multi-Target Tracking with Trajectory Prediction and Re-Identification//2019 Chinese Automation Congress. IEEE.
ISE_MOT16
28. online method using public detections
60.1
±9.2
56.9
±7.5
77.6 198 (26.1)221 (29.1)6,964 65,044 64.3 94.4 1.2 739 (11.5)951 (14.8)6.9
MIFT
MPNTrack
29. using public detections
58.6
±10.3
61.7
±7.3
78.9 207 (27.3)258 (34.0)4,949 70,252 61.5 95.8 0.8 354 (5.8)684 (11.1)6.5
G. Brasó, L. Leal-Taixé. Learning a Neural Solver for Multiple Object Tracking. In CVPR, 2020.
DD_TAMA16
30. online method using public detections
46.2
±8.4
49.4
±7.6
75.4 107 (14.1)334 (44.0)5,126 92,367 49.3 94.6 0.9 598 (12.1)1,127 (22.8)6.5
Y. Yoon, D. Kim, K. Yoon, Y. Song, M. Jeon. Online Multiple Pedestrian Tracking using Deep Temporal Appearance Matching Association. In arXiv:1907.00831, 2019.
TrackerMOTAIDF1MOTPMTMLFPFNRecallPrecisionFAFID Sw.Frag Hz
CMT16
31. using public detections
49.8
±9.0
59.2
±6.5
76.1 126 (16.6)331 (43.6)9,229 81,882 55.1 91.6 1.6 365 (6.6)617 (11.2)6.3
#Submission: TIP-21190-2019
MLT
32. online method using public detections
52.8
±8.2
62.6
±6.8
76.1 160 (21.1)322 (42.4)5,362 80,444 55.9 95.0 0.9 299 (5.4)702 (12.6)5.9
Y. Zhang, H. Sheng, Y. Wu, S. Wang, W. Ke, Z. Xiong. Multiplex Labeling Graph for Near Online Tracking in Crowded Scenes. In IEEE Internet of Things Journal, 2020.
AM_ADM
33. online method using public detections
40.1
±10.1
43.8
±9.6
75.4 54 (7.1)351 (46.2)8,503 99,891 45.2 90.6 1.4 789 (17.5)1,736 (38.4)5.8
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
HISP_T
34. online method using public detections
35.9
±8.7
28.9
±0.0
76.1 59 (7.8)380 (50.1)6,412 107,918 40.8 92.1 1.1 2,594 (63.6)2,298 (56.3)4.8
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
TLMHT
35. using public detections
48.7
±8.6
55.3
±5.6
76.4 119 (15.7)338 (44.5)6,632 86,504 52.6 93.5 1.1 413 (7.9)642 (12.2)4.8
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
M_track
36. online method using public detections
56.4
±11.9
54.6
±11.4
73.5 168 (22.1)248 (32.7)4,694 73,593 59.6 95.9 0.8 1,139 (19.1)1,411 (23.7)4.7
Anonymous submission
VAN
37. online method using public detections
57.3
±10.8
57.5
±8.9
79.1 188 (24.8)257 (33.9)3,845 73,489 59.7 96.6 0.6 550 (9.2)772 (12.9)4.7
Anonymous submission
M_track
38. online method using public detections
57.8
±11.7
57.5
±10.3
78.6 197 (26.0)238 (31.4)4,193 72,224 60.4 96.3 0.7 561 (9.3)844 (14.0)4.4
Anonymous submission
INTERA_MOT
39. using public detections
45.4
±8.1
47.7
±9.0
74.4 137 (18.1)294 (38.7)13,407 85,547 53.1 87.8 2.3 600 (11.3)930 (17.5)4.3
L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao, T. Huang. Interacting Tracklets for Multi-object Tracking. In IEEE Transactions on Image Processing, 2018.
LINF1
40. using public detections
41.0
±10.1
45.7
±8.5
74.8 88 (11.6)389 (51.3)7,896 99,224 45.6 91.3 1.3 430 (9.4)963 (21.1)4.2
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
TrackerMOTAIDF1MOTPMTMLFPFNRecallPrecisionFAFID Sw.Frag Hz
HDTR
41. using public detections
53.6
±8.7
46.6
±6.8
80.8 161 (21.2)281 (37.0)4,714 79,353 56.5 95.6 0.8 618 (10.9)833 (14.7)3.6
M. Babaee, A. Athar, G. Rigoll. Multiple People Tracking Using Hierarchical Deep Tracklet Re-identification. In arXiv preprint arXiv:1811.04091, 2018.
GM_PHD_DAL
42. online method using public detections
35.1
±9.1
26.6
±7.1
76.6 53 (7.0)390 (51.4)2,350 111,886 38.6 96.8 0.4 4,047 (104.8)5,338 (138.2)3.5
N. Baisa. Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning. In 2019 22th International Conference on Information Fusion (FUSION), 2019.
YOONKJ16
43. online method using public detections
47.0
±8.1
50.1
±7.5
75.8 125 (16.5)317 (41.8)7,901 88,179 51.6 92.3 1.3 627 (12.1)945 (18.3)3.5
K. YOON, J. GWAK, Y. SONG, Y. YOON, M. JEON. OneShotDA: Online Multi-object Tracker with One-shot-learning-based Data Association. In IEEE Access, 2020.
HISP_DAL
44. online method using public detections
37.4
±8.8
30.5
±6.8
76.3 58 (7.6)386 (50.9)3,222 108,865 40.3 95.8 0.5 2,101 (52.1)2,151 (53.4)3.3
N. Baisa. Robust Online Multi-target Visual Tracking using a HISP Filter with Discriminative Deep Appearance Learning. In CoRR, 2019.
TBSS
45. online method using public detections
44.6
±9.3
42.6
±7.2
75.2 93 (12.3)333 (43.9)4,136 96,128 47.3 95.4 0.7 790 (16.7)1,419 (30.0)3.0
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
LM_NN
46. using public detections
31.0
±7.2
31.5
±8.3
78.4 56 (7.4)443 (58.4)2,451 122,649 32.7 96.1 0.4 678 (20.7)666 (20.3)3.0
ID NEUCOM-D-18-03230
Seq2Seq
47. using public detections
49.8
±9.5
44.6
±8.0
77.0 114 (15.0)308 (40.6)2,835 87,813 51.8 97.1 0.5 868 (16.7)1,093 (21.1)2.9
Anonymous submission
GCRA
48. using public detections
48.2
±8.3
48.6
±5.6
77.5 98 (12.9)312 (41.1)5,104 88,586 51.4 94.8 0.9 821 (16.0)1,117 (21.7)2.8
C. Ma, C. Yang, F. Yang, Y. Zhuang, Z. Zhang, H. Jia, X. Xie. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. In ICME, 2018.
NOMT
49. using public detections
46.4
±8.9
53.3
±7.5
76.6 139 (18.3)314 (41.4)9,753 87,565 52.0 90.7 1.6 359 (6.9)504 (9.7)2.6
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
GNN_tracktor
50. online method using public detections
53.9
±11.1
53.7
±10.6
77.0 127 (16.7)299 (39.4)2,514 80,892 55.6 97.6 0.4 631 (11.3)894 (16.1)2.2
Anonymous submission
TrackerMOTAIDF1MOTPMTMLFPFNRecallPrecisionFAFID Sw.Frag Hz
LSST16O
51. online method using public detections
49.2
±10.2
56.5
±7.2
74.0 102 (13.4)314 (41.4)7,187 84,875 53.4 93.1 1.2 606 (11.3)2,497 (46.7)2.0
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification
UnsupTrack
52. online method using public detections
62.4
±14.6
58.5
±9.8
78.3 205 (27.0)242 (31.9)5,909 61,981 66.0 95.3 1.0 588 (8.9)1,361 (20.6)1.9
Simple Unsupervised Multi-Object Tracking (Under Review)
QuadMOT16
53. using public detections
44.1
±9.4
38.3
±8.6
76.4 111 (14.6)341 (44.9)6,388 94,775 48.0 93.2 1.1 745 (15.5)1,096 (22.8)1.8
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
EDMT
54. using public detections
45.3
±9.1
47.9
±7.8
75.9 129 (17.0)303 (39.9)11,122 87,890 51.8 89.5 1.9 639 (12.3)946 (18.3)1.8
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
MHT_bLSTM6
55. using public detections
42.1
±8.6
47.8
±7.4
75.9 113 (14.9)337 (44.4)11,637 93,172 48.9 88.5 2.0 753 (15.4)1,156 (23.6)1.8
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
TrctrD16
56. online method using public detections
54.8
±11.8
53.4
±9.1
77.5 145 (19.1)281 (37.0)2,955 78,765 56.8 97.2 0.5 645 (11.4)1,515 (26.7)1.6
Y. Xu, A. Osep, Y. Ban, R. Horaud, L. Leal-Taixe, X. Alameda-Pineda. How To Train Your Deep Multi-Object Tracker. In , 2019.
Tracktor++v2
57. online method using public detections
56.2
±11.4
54.9
±9.9
79.2 157 (20.7)272 (35.8)2,394 76,844 57.9 97.8 0.4 617 (10.7)1,068 (18.5)1.6
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
Tracktor++
58. online method using public detections
54.4
±12.0
52.5
±9.6
78.2 144 (19.0)280 (36.9)3,280 79,149 56.6 96.9 0.6 682 (12.1)1,480 (26.2)1.5
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
CRF_TRACK
59. using public detections
50.3
±7.9
54.4
±6.4
74.8 139 (18.3)271 (35.7)7,148 82,746 54.6 93.3 1.2 702 (12.9)1,387 (25.4)1.5
Jun xiang, Chao Ma, Guohan Xu, Jianhua Hou, End-to-End Learning Deep CRF models for Multi-Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2020
MTDF
60. online method using public detections
45.7
±10.8
40.1
±8.7
72.6 107 (14.1)276 (36.4)12,018 84,970 53.4 89.0 2.0 1,987 (37.2)3,377 (63.2)1.5
Z. Fu, F. Angelini, J. Chambers, S. Naqvi. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. In IEEE Transactions on Multimedia, 2019.
TrackerMOTAIDF1MOTPMTMLFPFNRecallPrecisionFAFID Sw.Frag Hz
TBD
61. using public detections
33.7
±8.8
0.0
±0.0
76.5 55 (7.2)411 (54.2)5,804 112,587 38.2 92.3 1.0 2,418 (63.2)2,252 (58.9)1.3
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
msot
62. online method using public detections
59.5
±9.0
52.0
±8.1
78.1 187 (24.6)224 (29.5)5,070 68,001 62.7 95.8 0.9 800 (12.8)1,014 (16.2)1.1
Anonymous submission
AMIR
63. online method using public detections
47.2
±8.2
46.3
±7.2
75.8 106 (14.0)316 (41.6)2,681 92,856 49.1 97.1 0.5 774 (15.8)1,675 (34.1)1.0
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
RAR16pub
64. online method using public detections
45.9
±9.7
48.8
±7.6
74.8 100 (13.2)318 (41.9)6,871 91,173 50.0 93.0 1.2 648 (13.0)1,992 (39.8)0.9
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
S_H_T
65. online method using public detections
49.3
±10.8
50.7
±7.1
77.5 158 (20.8)242 (31.9)16,998 74,142 59.3 86.4 2.9 1,302 (21.9)2,183 (36.8)0.9
Anonymous submission
siameseCos
66. using public detections
49.4
±8.1
49.8
±7.4
75.9 145 (19.1)299 (39.4)6,281 85,384 53.2 93.9 1.1 679 (12.8)823 (15.5)0.8
In preparation
JMC
67. using public detections
46.3
±9.4
46.3
±9.2
75.7 118 (15.5)301 (39.7)6,373 90,914 50.1 93.5 1.1 657 (13.1)1,114 (22.2)0.8
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
MHT_DAM
68. using public detections
45.8
±8.6
46.1
±7.6
76.3 123 (16.2)328 (43.2)6,412 91,758 49.7 93.4 1.1 590 (11.9)781 (15.7)0.8
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
HCC
69. using public detections
49.3
±10.2
50.7
±7.4
79.0 135 (17.8)303 (39.9)5,333 86,795 52.4 94.7 0.9 391 (7.5)535 (10.2)0.8
L. Ma, S. Tang, M. Black, L. Gool. Customized Multi-Person Tracker. In Computer Vision -- ACCV 2018, 2018.
eTC
70. using public detections
49.2
±9.1
56.1
±7.2
75.5 131 (17.3)306 (40.3)8,400 83,702 54.1 92.2 1.4 606 (11.2)882 (16.3)0.7
G. Wang, Y. Wang, H. Zhang, R. Gu, J. Hwang. Exploit the connectivity: Multi-object tracking with trackletnet. In Proceedings of the 27th ACM International Conference on Multimedia, 2019.
TrackerMOTAIDF1MOTPMTMLFPFNRecallPrecisionFAFID Sw.Frag Hz
deepS2
71. using public detections
46.0
±8.2
46.5
±6.1
76.3 118 (15.5)323 (42.6)5,124 92,697 49.2 94.6 0.9 693 (14.1)759 (15.4)0.7
ID 32
FWT
72. using public detections
47.8
±10.0
44.3
±11.0
75.5 145 (19.1)290 (38.2)8,886 85,487 53.1 91.6 1.5 852 (16.0)1,534 (28.9)0.6
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
LFNF16
73. using public detections
43.6
±8.4
41.6
±7.8
76.6 101 (13.3)347 (45.7)6,616 95,363 47.7 92.9 1.1 836 (17.5)938 (19.7)0.6
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
MCjoint
74. using public detections
47.1
±10.3
52.3
±10.2
76.3 155 (20.4)356 (46.9)6,703 89,368 51.0 93.3 1.1 370 (7.3)598 (11.7)0.6
}@article{DBLP:journals/corr/KeuperTYABS16, author = {Margret Keuper and Siyu Tang and Zhongjie Yu and Bjoern Andres and Thomas Brox and Bernt Schiele}, title = {A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects}, journal = {CoRR}, volume = {abs/1607.06317}, year = {2016}, url = {http://arxiv.org/abs/1607.06317}, timestamp = {Wed, 07 Jun 2017 14:41:31 +0200}, biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/KeuperTYABS16}, bibsource = {dblp computer science bibliography, http://dblp.org} }
LTTSC-CRF
75. using public detections
37.6
±8.0
42.1
±6.6
75.9 73 (9.6)419 (55.2)11,969 101,343 44.4 87.1 2.0 481 (10.8)1,012 (22.8)0.6
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
AFN
76. using public detections
49.0
±10.2
48.2
±7.4
78.0 145 (19.1)271 (35.7)9,508 82,506 54.7 91.3 1.6 899 (16.4)1,383 (25.3)0.6
H. Shen, L. Huang, C. Huang, W. Xu. Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. In CoRR, 2018.
GMMCP
77. using public detections
38.1
±7.8
35.5
±4.5
75.8 65 (8.6)386 (50.9)6,607 105,315 42.2 92.1 1.1 937 (22.2)1,669 (39.5)0.5
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
Lif_T
78. using public detections
61.3
±0.0
64.7
±0.0
78.3 205 (27.0)258 (34.0)4,844 65,401 64.1 96.0 0.8 389 (6.1)1,034 (16.1)0.5
Anonymous submission
ASTT
79. using public detections
47.2
±9.6
44.3
±8.5
76.1 124 (16.3)316 (41.6)4,680 90,877 50.2 95.1 0.8 633 (12.6)814 (16.2)0.5
Yi Tao el al., “Adaptive Spatio-temporal Model Based Multiple Object Tracking Considering a Moving Camera[C]”, International Conference on Universal Village (UV), 2018.
eHAF16
80. using public detections
47.2
±8.7
52.4
±7.6
75.7 141 (18.6)325 (42.8)12,586 83,107 54.4 88.7 2.1 542 (10.0)787 (14.5)0.5
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
TrackerMOTAIDF1MOTPMTMLFPFNRecallPrecisionFAFID Sw.Frag Hz
LMP
81. using public detections
48.8
±8.9
51.3
±6.8
79.0 138 (18.2)304 (40.1)6,654 86,245 52.7 93.5 1.1 481 (9.1)595 (11.3)0.5
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
TrajTrack
82. online method using public detections
56.1
±11.2
56.9
±9.0
79.0 163 (21.5)269 (35.4)3,691 75,628 58.5 96.7 0.6 742 (12.7)1,009 (17.2)0.5
Anonymous submission
CDA_DDALv2
83. online method using public detections
43.9
±7.8
45.1
±5.7
74.7 81 (10.7)337 (44.4)6,450 95,175 47.8 93.1 1.1 676 (14.1)1,795 (37.6)0.5
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
ENFT16
84. using public detections
50.3
±8.2
55.0
±6.4
76.2 146 (19.2)302 (39.8)8,341 81,843 55.1 92.3 1.4 490 (8.9)754 (13.7)0.4
BUAA
oICF
85. online method using public detections
43.2
±10.6
49.3
±9.1
74.3 86 (11.3)368 (48.5)6,651 96,515 47.1 92.8 1.1 381 (8.1)1,404 (29.8)0.4
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
DMAN
86. online method using public detections
46.1
±9.1
54.8
±7.0
73.8 132 (17.4)324 (42.7)7,909 89,874 50.7 92.1 1.3 532 (10.5)1,616 (31.9)0.3
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
OVBT
87. online method using public detections
38.4
±8.6
37.8
±5.5
75.4 57 (7.5)359 (47.3)11,517 99,463 45.4 87.8 1.9 1,321 (29.1)2,140 (47.1)0.3
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
SMOT
88. using public detections
29.7
±8.8
0.0
±0.0
75.2 40 (5.3)362 (47.7)17,426 107,552 41.0 81.1 2.9 3,108 (75.8)4,483 (109.3)0.2
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
STAM16
89. online method using public detections
46.0
±9.1
50.0
±8.4
74.9 111 (14.6)331 (43.6)6,895 91,117 50.0 93.0 1.2 473 (9.5)1,422 (28.4)0.2
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
DCCRF16
90. online method using public detections
44.8
±9.5
39.7
±8.2
75.6 107 (14.1)321 (42.3)5,613 94,133 48.4 94.0 0.9 968 (20.0)1,378 (28.5)0.1
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
TrackerMOTAIDF1MOTPMTMLFPFNRecallPrecisionFAFID Sw.Frag Hz
KCF16
91. online method using public detections
48.8
±9.6
47.2
±7.8
75.7 120 (15.8)289 (38.1)5,875 86,567 52.5 94.2 1.0 906 (17.3)1,116 (21.2)0.1
P. Chu, H. Fan, C. Tan, H. Ling. Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment. In WACV, 2019.
SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(53.3 MOTA)

MOT16-06

MOT16-06

(45.0 MOTA)

MOT16-12

MOT16-12

(40.4 MOTA)

...

...

MOT16-08

MOT16-08

(31.4 MOTA)

MOT16-14

MOT16-14

(24.5 MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark. The frequency is provided by the authors and not officially evaluated by the MOTChallenge.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.