MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
AFN
1. using public detections
24.4
49.0
±10.2
48.219.1% 35.7% 9,50882,506899 (16.4)1,383 (25.3)0.6Public
Paper ID 4411
AMIR
2. online method using public detections
28.3
47.2
±7.7
46.314.0% 41.6% 2,68192,856774 (15.8)1,675 (34.1)1.0Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
AM_ADM
3. online method using public detections
39.3
40.1
±10.1
43.87.1% 46.2% 8,50399,891789 (17.5)1,736 (38.4)5.8Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
AOReid
4. online method using public detections
23.9
48.2
±8.7
50.815.3% 36.8% 10,28383,301821 (15.1)1,963 (36.1)11.2Public
Anonymous submission
ASTT
5. using public detections
25.8
47.2
±9.6
44.316.3% 41.6% 4,68090,877633 (12.6)814 (16.2)0.5Public
Yi Tao el al., “Adaptive Spatio-temporal Model Based Multiple Object Tracking Considering a Moving Camera[C]”, International Conference on Universal Village (UV), 2018.
BnW
6. online method using public detections
18.5
53.6
±13.6
52.819.0% 36.6% 5,21778,471909 (16.0)1,742 (30.6)2.7Public
Anonymous submission
CDA_DDALv2
7. online method using public detections
36.9
43.9
±7.8
45.110.7% 44.4% 6,45095,175676 (14.1)1,795 (37.6)0.5Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
CEM
8. using public detections
44.6
33.2
±7.9
0.07.8% 54.4% 6,837114,322642 (17.2)731 (19.6)0.3Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
CMT16
9. using public detections new
18.8
48.1
±9.0
56.615.7% 46.2% 7,75886,501381 (7.2)615 (11.7)6.3Public
Anonymous submission
cm_test
10. online method using public detections
39.6
35.4
±20.2
40.36.5% 71.4% 4,427112,889402 (10.6)1,176 (30.9)1.6Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
CppSORT
11. online method using public detections
44.9
31.5
±9.0
27.74.3% 59.9% 3,048120,2781,587 (46.6)2,239 (65.8)687.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
CRF_RNN16
12. using public detections
21.2
49.0
±7.2
53.918.1% 35.8% 8,49583,838621 (11.5)1,252 (23.2)1.3Public
Anonymous submission
CSAHD
13. online method using public detections
36.5
43.7
±11.6
45.710.5% 46.1% 8,31893,273984 (20.1)2,164 (44.3)23.2Public
Anonymous submission
DCCRF16
14. online method using public detections
37.4
44.8
±9.8
39.714.1% 42.3% 5,61394,133968 (20.0)1,378 (28.5)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
DCOR
15. online method using public detections
45.3
28.3
±9.0
21.73.4% 63.9% 1,618128,345849 (28.7)2,592 (87.5)32.9Public
Anonymous submission
deepS2
16. using public detections
27.8
46.0
±8.2
46.515.5% 42.6% 5,12492,697693 (14.1)759 (15.4)0.7Public
ID 32
DMMOT
17. online method using public detections
28.8
46.1
±11.1
54.817.4% 42.7% 7,90989,874532 (10.5)1,616 (31.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
DP_NMS
18. using public detections
38.3
26.2
±9.3
31.24.1% 67.5% 3,689130,557365 (12.9)638 (22.5)5.9Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
DRT
19. online method using public detections
40.1
34.7
±11.4
41.16.3% 61.8% 6,992111,617460 (11.9)1,127 (29.1)6.2Public
Anonymous submission
DS_v2
20. using public detections
17.4
59.3
±12.9
57.524.2% 29.1% 7,46565,810887 (13.9)2,738 (42.8)39.4Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
D_cost16
21. online method using public detections
34.2
39.9
±9.1
35.38.7% 50.2% 1,133107,586790 (19.3)824 (20.1)8.5Public
Anonymous submission
EAGS16
22. using public detections
21.7
47.4
±10.4
50.117.3% 42.7% 8,36986,931575 (11.0)913 (17.5)197.3Public
H. Sheng, X. Zhang, Y. Zhang, Y. Wu, J. Chen. Enhanced Association with Supervoxels in Multiple Hypothesis Tracking. In IEEE Access, 2018.
EAMTT_pub
23. online method using public detections
40.8
38.8
±8.5
42.47.9% 49.1% 8,114102,452965 (22.0)1,657 (37.8)11.8Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
EDMT
24. using public detections
28.8
45.3
±9.1
47.917.0% 39.9% 11,12287,890639 (12.3)946 (18.3)1.8Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
eHAF16
25. using public detections
25.8
47.2
±16.8
52.418.6% 42.8% 12,58683,107542 (10.0)787 (14.5)0.5Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
eTC
26. using public detections
22.2
49.2
±9.1
56.117.3% 40.3% 8,40083,702606 (11.2)882 (16.3)0.7Public
Anonymous submission
FWT
27. using public detections
30.3
47.8
±9.4
44.319.1% 38.2% 8,88685,487852 (16.0)1,534 (28.9)0.6Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
GCK
28. online method using public detections
51.6
28.7
±8.5
30.63.4% 51.0% 21,436106,4242,217 (53.3)3,277 (78.7)25.1Public
Anonymous submission
GCRA
29. using public detections
27.1
48.2
±8.3
48.612.9% 41.1% 5,10488,586821 (16.0)1,117 (21.7)2.8Public
C. Ma, C. Yang, F. Yang, Y. Zhuang, Z. Zhang, H. Jia, X. Xie. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. In ICME, 2018.
GMMCP
30. using public detections
46.0
38.1
±7.8
35.58.6% 50.9% 6,607105,315937 (22.2)1,669 (39.5)0.5Public
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
GMPHD_HDA
31. online method using public detections
39.7
30.5
±6.9
33.44.6% 59.7% 5,169120,970539 (16.0)731 (21.7)13.6Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
GM_PHD_DAL
32. online method using public detections
48.8
34.6
±9.1
22.47.1% 51.4% 2,350111,8864,980 (128.9)5,338 (138.2)3.5Public
Anonymous submission
GM_PHD_Dl
33. online method using public detections
49.7
34.6
±9.1
22.47.1% 51.4% 2,350111,8864,980 (128.9)5,338 (138.2)3.5Public
Anonymous submission
GM_PHD_e17
34. online method using public detections
50.4
33.8
±8.9
25.36.3% 54.9% 1,766115,1303,778 (102.5)3,874 (105.1)3.3Public
Anonymous submission
GM_PHD_N1T
35. online method using public detections
48.7
33.3
±8.9
25.55.5% 56.0% 1,750116,4523,499 (96.8)3,594 (99.5)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019.
HAM_ACT16
36. online method using public detections
35.5
38.1
±8.2
43.37.8% 54.4% 6,976105,434418 (9.9)707 (16.8)8.0Public
HDTR
37. using public detections
16.8
53.6
±8.7
46.621.2% 37.0% 4,71479,353618 (10.9)833 (14.7)3.6Public
HISP_T
38. online method using public detections
47.4
35.9
±8.5
28.97.8% 50.1% 6,412107,9182,594 (63.6)2,298 (56.3)4.8Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
HISP_T2
39. online method using public detections
45.6
37.2
±8.6
29.77.6% 50.7% 3,323108,8592,370 (58.8)2,234 (55.4)4.8Public
Anonymous submission
INTERA_MOT
40. using public detections
27.2
45.4
±8.6
47.718.1% 38.7% 13,40785,547600 (11.3)930 (17.5)4.3Public
L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao, T. Huang. Interacting Tracklets for Multi-object Tracking. In IEEE Transactions on Image Processing, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
JCmin_MOT
41. online method using public detections
38.1
36.7
±9.1
36.27.5% 54.4% 2,936111,890667 (17.3)831 (21.5)14.8Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
JCSTD
42. online method using public detections
33.8
47.4
±8.3
41.114.4% 36.4% 8,07686,6381,266 (24.1)2,697 (51.4)8.8Public
W. Tian, M. Lauer, L. Chen. Online Multi-Object Tracking Using Joint Domain Information in Traffic Scenarios. In IEEE Transactions on Intelligent Transportation Systems, 2019.
JMC
43. using public detections
29.3
46.3
±9.0
46.315.5% 39.7% 6,37390,914657 (13.1)1,114 (22.2)0.8Public
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
JPDA_m
44. using public detections
40.1
26.2
±6.1
0.04.1% 67.5% 3,689130,549365 (12.9)638 (22.5)22.2Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
LFNF16
45. using public detections
39.1
43.6
±11.0
41.613.3% 45.7% 6,61695,363836 (17.5)938 (19.7)0.6Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
LINF1
46. using public detections
36.1
41.0
±9.5
45.711.6% 51.3% 7,89699,224430 (9.4)963 (21.1)4.2Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
LMP
47. using public detections
22.1
48.8
±9.8
51.318.2% 40.1% 6,65486,245481 (9.1)595 (11.3)0.5Public
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
LP2D
48. using public detections
40.9
35.7
±10.1
34.28.7% 50.7% 5,084111,163915 (23.4)1,264 (32.4)49.3Public
MOT baseline: Linear programming on 2D image coordinates.
LSST16O
49. online method using public detections
28.2
49.2
±10.2
56.513.4% 41.4% 7,18784,875606 (11.3)2,497 (46.7)2.0Public
Anonymous submission
LTTSC-CRF
50. using public detections
44.6
37.6
±9.9
42.19.6% 55.2% 11,969101,343481 (10.8)1,012 (22.8)0.6Public
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MCjoint
51. using public detections
24.8
47.1
±10.8
52.320.4% 46.9% 6,70389,368370 (7.3)598 (11.7)0.6Public
}@article{DBLP:journals/corr/KeuperTYABS16, author = {Margret Keuper and Siyu Tang and Zhongjie Yu and Bjoern Andres and Thomas Brox and Bernt Schiele}, title = {A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects}, journal = {CoRR}, volume = {abs/1607.06317}, year = {2016}, url = {http://arxiv.org/abs/1607.06317}, timestamp = {Wed, 07 Jun 2017 14:41:31 +0200}, biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/KeuperTYABS16}, bibsource = {dblp computer science bibliography, http://dblp.org} }
MHT_bLSTM6
52. using public detections
38.1
42.1
±9.7
47.814.9% 44.4% 11,63793,172753 (15.4)1,156 (23.6)1.8Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
MHT_DAM
53. using public detections
30.3
45.8
±8.9
46.116.2% 43.2% 6,41291,758590 (11.9)781 (15.7)0.8Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
MOTDT
54. online method using public detections
28.7
47.6
±8.2
50.915.2% 38.3% 9,25385,431792 (14.9)1,858 (35.0)20.6Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
MTDF
55. online method using public detections
40.6
45.7
±11.2
40.114.1% 36.4% 12,01884,9701,987 (37.2)3,377 (63.2)1.5Public
Anonymous submission
MTT_TPR
56. using public detections
22.6
54.9
±11.7
53.118.7% 34.8% 4,13076,6731,447 (25.0)3,693 (63.7)6.7Public
Anonymous submission
NLLMPa
57. using public detections
23.8
47.6
±10.6
47.317.0% 40.4% 5,84489,093629 (12.3)768 (15.0)8.3Public
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
NOMT
58. using public detections
23.5
46.4
±9.9
53.318.3% 41.4% 9,75387,565359 (6.9)504 (9.7)2.6Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
NOTC
59. using public detections
20.2
49.8
±8.3
55.317.9% 37.7% 7,24883,614614 (11.3)1,372 (25.3)19.2Public
Anonymous submission
oICF
60. online method using public detections
37.8
43.2
±10.2
49.311.3% 48.5% 6,65196,515381 (8.1)1,404 (29.8)0.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
OVBT
61. online method using public detections
52.9
38.4
±8.8
37.87.5% 47.3% 11,51799,4631,321 (29.1)2,140 (47.1)0.3Public
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
PDetTracId
62. online method using public detections
30.2
49.7
±9.4
46.816.7% 37.3% 4,39386,2411,040 (19.7)3,652 (69.3)2.4Public
Anonymous submission
PHD_GSDL16
63. online method using public detections
41.8
41.0
±8.9
43.111.3% 41.5% 6,49899,2571,810 (39.7)3,650 (80.1)8.3Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
PMPTracker
64. online method using public detections
44.2
40.3
±11.7
38.210.4% 42.0% 10,07197,5241,343 (28.9)2,764 (59.4)148.0Public
Light version of PTZ camera Mutiple People Tracker
QuadMOT16
65. using public detections
37.6
44.1
±9.4
38.314.6% 44.9% 6,38894,775745 (15.5)1,096 (22.8)1.8Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
RAR16pub
66. online method using public detections
36.7
45.9
±9.7
48.813.2% 41.9% 6,87191,173648 (13.0)1,992 (39.8)0.9Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
SMOT
67. using public detections
61.5
29.7
±7.3
0.05.3% 47.7% 17,426107,5523,108 (75.8)4,483 (109.3)0.2Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
SRPN16
68. online method using public detections
32.6
48.2
±8.5
51.814.5% 37.7% 7,70485,982838 (15.9)1,985 (37.6)1.4Public
Anonymous submission
STAM16
69. online method using public detections
35.6
46.0
±9.1
50.014.6% 43.6% 6,89591,117473 (9.5)1,422 (28.4)0.2Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
STCG
70. using public detections
20.6
49.3
±8.6
52.016.2% 41.4% 6,88684,979515 (9.6)775 (14.5)22.3Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TAR
71. online method using public detections
32.1
49.4
±8.1
40.018.4% 30.6% 11,22079,8391,180 (21.0)2,052 (36.5)5.0Public
Anonymous submission
TBD
72. using public detections
54.8
33.7
±9.2
0.07.2% 54.2% 5,804112,5872,418 (63.2)2,252 (58.9)1.3Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
TBNMF16
73. online method using public detections
32.0
45.6
±8.9
46.013.4% 43.5% 4,23094,435584 (12.1)1,229 (25.5)7.9Public
Anonymous submission
TBSS
74. online method using public detections
38.1
44.6
±9.3
42.612.3% 43.9% 4,13696,128790 (16.7)1,419 (30.0)3.0Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
TDP
75. online method using public detections
44.5
33.9
±10.2
40.46.2% 62.2% 6,709113,249480 (12.7)1,105 (29.2)9.7Public
Anonymous submission
TLMHT
76. using public detections
23.7
48.7
±8.6
55.315.7% 44.5% 6,63286,504413 (7.9)642 (12.2)4.8Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
TPM
77. using public detections
21.5
51.3
±9.3
47.918.7% 40.8% 2,70185,504569 (10.7)707 (13.3)0.8Public
Anonymous submission
TripBFT
78. online method using public detections
26.9
48.3
±8.1
50.915.4% 40.1% 2,70691,047543 (10.8)896 (17.9)0.5Public
Anonymous submission
TripT
79. online method using public detections
27.6
48.1
±8.5
51.915.8% 40.2% 2,82791,210563 (11.3)1,143 (22.9)0.6Public
Anonymous submission
TSN
80. using public detections
29.6
48.2
±8.7
45.719.9% 38.9% 8,44785,315665 (12.5)829 (15.6)0.8Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TST_PLS
81. online method using public detections
46.8
39.7
±11.1
43.36.7% 47.4% 8,447100,728783 (17.5)1,730 (38.7)4.0Public
Anonymous submission
YT16
82. online method using public detections
46.6
37.8
±8.8
31.18.8% 46.1% 4,384106,3652,655 (63.7)2,750 (66.0)12.1Public
Anonymous submission

Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(52.4% MOTA)

MOT16-06

MOT16-06

(43.9% MOTA)

MOT16-07

MOT16-07

(37.4% MOTA)

...

...

MOT16-08

MOT16-08

(29.5% MOTA)

MOT16-14

MOT16-14

(23.8% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.