MOT17 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
BIG_HA
1. online method using public detections
40.4
-37.9
±24.1
0.00.0% 100.0% 213,867564,2280 (nan)0 (nan)887.9Public
Anonymous submission
CDT
2. using public detections
41.3
-64.5
±16.9
0.10.0% 99.4% 364,642563,67272 (730.7)64 (649.5)46.9Public
Anonymous submission
TLMHT
3. using public detections
28.2
50.6
±12.5
56.517.6% 43.4% 22,213255,0301,407 (25.7)2,079 (37.9)2.6Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
HCC
4. using public detections
31.9
44.8
±11.2
46.818.3% 38.9% 17,586292,2941,555 (32.3)2,221 (46.1)0.9Public
Anonymous submission
LM_NN
5. using public detections
37.4
45.1
±13.3
43.214.8% 46.2% 10,834296,4512,286 (48.2)2,463 (51.9)2.5Public
NEUCOM-D-18-03230
TPM
6. using public detections
20.6
54.2
±13.0
52.622.8% 37.5% 13,739242,7301,824 (32.0)2,472 (43.4)0.8Public
Anonymous submission
SAS_MOT17
7. using public detections
36.0
44.2
±12.2
57.216.1% 44.3% 29,473283,6111,529 (30.7)2,644 (53.2)4.8Public
Anonymous submission
HDTR
8. using public detections
16.0
54.1
±11.4
48.423.3% 34.8% 18,002238,8181,895 (32.9)2,693 (46.7)1.8Public
CMT
9. using public detections
15.7
52.0
±13.2
54.823.3% 37.7% 31,660237,5471,827 (31.6)2,738 (47.3)10.2Public
Anonymous submission
eHAF17
10. using public detections
20.9
51.8
±13.2
54.723.4% 37.9% 33,212236,7721,834 (31.6)2,739 (47.2)0.7Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
yt_face
11. online method using public detections
22.8
52.6
±13.1
51.523.0% 35.9% 23,894241,4892,047 (35.8)2,827 (49.4)2.2Public
Anonymous submission
MHT_DAM
12. using public detections
28.1
50.7
±13.7
47.220.8% 36.9% 22,875252,8892,314 (41.9)2,865 (51.9)0.9Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
eTC17
13. using public detections
20.7
51.9
±12.8
58.023.5% 35.5% 37,311231,6582,294 (38.9)2,917 (49.5)0.7Public
Anonymous submission
jCC
14. using public detections
22.8
51.2
±14.5
54.520.9% 37.0% 25,937247,8221,802 (32.1)2,984 (53.2)1.8Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
HAM_SADF17
15. online method using public detections
28.8
48.3
±13.2
51.117.1% 41.7% 20,967269,0381,871 (35.8)3,020 (57.7)5.0Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
MHT_bLSTM
16. using public detections
32.6
47.5
±12.6
51.918.2% 41.7% 25,981268,0422,069 (39.4)3,124 (59.5)1.9Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
SemiOMOT
17. using public detections
23.3
52.4
±15.0
51.022.6% 34.6% 23,660242,9532,070 (36.4)3,170 (55.7)0.7Public
Anonymous submission
NV_MC
18. using public detections
32.1
49.1
±13.9
45.719.0% 38.0% 16,850267,9232,446 (46.6)3,196 (60.9)0.3Public
Anonymous submission
EDMT17
19. using public detections
26.9
50.0
±13.9
51.321.6% 36.3% 32,279247,2972,264 (40.3)3,260 (58.0)0.6Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
CEMT
20. using public detections
30.3
49.3
±12.6
44.416.8% 38.5% 21,711261,8082,696 (50.3)3,409 (63.6)5.8Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
NOTBD
21. using public detections
26.2
53.9
±12.7
51.221.5% 35.6% 28,912228,3562,964 (49.8)3,600 (60.5)0.3Public
Anonymous submission
DSA_MOT17
22. online method using public detections
35.0
45.0
±12.6
43.615.8% 39.2% 21,442286,4822,491 (50.6)3,824 (77.7)9.9Public
Anonymous submission
IDGA
23. using public detections
24.6
49.9
±12.2
50.322.1% 36.7% 37,060243,1482,426 (42.6)3,846 (67.6)59.2Public
Anonymous submission
TEM
24. using public detections
35.5
49.1
±12.6
45.417.0% 38.3% 22,119261,7973,439 (64.2)3,881 (72.4)8.2Public
Anonymous submission
HIK_MOT17
25. using public detections
16.4
53.9
±13.7
54.323.7% 32.0% 27,656230,0422,386 (40.3)4,192 (70.8)5.4Public
FWT
26. using public detections
27.1
51.3
±13.1
47.621.4% 35.2% 24,101247,9212,648 (47.2)4,279 (76.3)0.2Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
AFN17
27. using public detections
23.8
51.5
±13.0
46.920.6% 35.5% 22,391248,4202,593 (46.3)4,308 (77.0)1.8Public
Paper ID 4411
TBNMF17
28. online method using public detections
28.3
50.6
±12.6
49.318.9% 39.2% 17,522258,9902,014 (37.2)4,432 (81.9)6.9Public
Anonymous submission
COMOT
29. online method using public detections
33.6
46.4
±13.5
48.514.8% 42.2% 20,752279,8162,069 (41.0)4,606 (91.4)5.0Public
Anonymous submission
SSOMOT
30. online method using public detections
37.8
46.8
±13.1
49.215.3% 39.1% 24,041274,2572,121 (41.3)4,897 (95.3)4.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
AM_ADM17
31. online method using public detections
31.0
48.1
±13.8
52.113.4% 39.7% 25,061265,4952,214 (41.8)5,027 (94.9)5.7Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
STDIC
32. online method using public detections
42.5
44.1
±13.6
45.913.2% 39.6% 46,126266,4492,992 (56.7)5,143 (97.4)17,757.0Public
Anonymous submission
AEb
33. using public detections
27.0
48.1
±13.4
46.017.7% 39.5% 16,839273,8192,350 (45.7)5,275 (102.5)66.9Public
Anonymous submission
MOTDT17
34. online method using public detections
25.6
50.9
±11.9
52.717.5% 35.7% 24,069250,7682,474 (44.5)5,317 (95.7)18.3Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
DMAN
35. online method using public detections
30.2
48.2
±12.3
55.719.3% 38.3% 26,218263,6082,194 (41.2)5,378 (100.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
REQT
36. online method using public detections
44.3
43.9
±14.2
47.413.1% 45.8% 34,309279,0302,986 (59.1)5,402 (106.9)64.1Public
Anonymous submission
EDA_GNN
37. online method using public detections
39.9
45.5
±13.8
40.515.6% 40.6% 25,685277,6634,091 (80.5)5,579 (109.8)39.3Public
Paper ID 2713
BnW
38. online method using public detections
23.0
52.5
±15.3
52.618.7% 36.7% 19,192245,7652,822 (50.0)5,610 (99.4)1.7Public
Anonymous submission
MOT_test
39. online method using public detections
23.5
51.6
±11.9
53.917.3% 35.5% 21,419249,0592,384 (42.7)5,613 (100.5)7.8Public
Anonymous submission
EAMTT
40. online method using public detections
48.8
42.6
±13.3
41.812.7% 42.7% 30,711288,4744,488 (91.8)5,720 (117.0)1.4Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro. Online Multi-target Tracking with Strong and Weak Detections. In Computer Vision -- ECCV 2016 Workshops, 2016.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
TOPA
41. online method using public detections new
23.8
51.8
±13.5
53.419.6% 33.1% 27,603241,5462,668 (46.7)5,790 (101.2)443.9Public
Anonymous submission
PA_MOT17
42. online method using public detections
22.4
51.6
±13.5
53.518.9% 33.5% 28,794241,7042,635 (46.1)5,808 (101.6)710.3Public
Anonymous submission
QiMOT
43. online method using public detections
43.2
47.2
±13.1
40.815.5% 39.9% 18,907274,8284,320 (84.2)5,917 (115.4)1.8Public
Anonymous submission
TAR_1
44. online method using public detections
30.7
51.6
±11.9
41.421.7% 28.7% 33,514235,8593,629 (62.4)5,949 (102.2)5.6Public
Anonymous submission
SRPN17
45. online method using public detections
29.1
51.0
±11.7
53.516.8% 35.1% 21,011252,8082,596 (47.0)5,981 (108.4)4.1Public
Anonymous submission
ISDH_HDAv2
46. online method using public detections
21.3
54.5
±14.5
65.926.4% 32.1% 46,693207,0933,010 (47.6)6,000 (94.8)3.6Public
MM-008988/ IEEE Transactions on Multimedia
Qclc
47. online method using public detections
25.5
54.0
±14.3
47.723.3% 30.7% 22,374232,2124,748 (80.7)6,022 (102.3)1.8Public
Anonymous submission
RTac
48. online method using public detections
35.8
46.3
±14.6
49.218.9% 33.5% 43,447255,1584,196 (76.6)6,056 (110.6)14.1Public
Anonymous submission
WCFMT17
49. using public detections
35.6
47.3
±16.0
52.321.9% 30.7% 43,253250,3023,556 (63.9)6,071 (109.1)1.0Public
Anonymous submission
hpmmt17
50. online method using public detections
21.2
51.2
±11.8
53.617.3% 34.9% 21,957250,8912,292 (41.3)6,108 (110.0)44,392.5Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
Q_ls
51. online method using public detections
36.8
50.2
±14.4
43.619.7% 37.3% 23,143253,1514,414 (80.1)6,112 (110.9)1.8Public
Anonymous submission
Sn_PBC
52. using public detections
26.5
51.3
±11.7
53.417.4% 35.2% 21,255251,2562,394 (43.2)6,148 (110.8)14.8Public
Anonymous submission
MOT_BJ
53. online method using public detections
34.3
50.4
±12.3
51.018.2% 34.1% 30,911245,8313,296 (58.4)6,279 (111.3)0.0Public
Anonymous submission
RTRC
54. online method using public detections
35.9
48.5
±14.2
48.618.7% 35.7% 34,180252,8593,490 (63.2)6,304 (114.2)9.8Public
Anonymous submission
ts_WCFMT
55. online method using public detections
35.9
48.4
±13.6
51.421.0% 32.5% 32,037255,4723,410 (62.3)6,351 (116.1)1.0Public
Anonymous submission
TCF
56. online method using public detections
37.0
48.3
±13.6
48.718.9% 35.1% 36,274252,0923,530 (63.8)6,390 (115.5)6.4Public
Anonymous submission
PHD_PM_OM
57. online method using public detections
39.8
48.8
±13.4
43.219.1% 35.2% 26,260257,9714,407 (81.2)6,448 (118.8)0.6Public
Anonymous submission
IOUT_Re
58. online method using public detections
26.5
52.7
±13.0
43.320.1% 32.6% 16,529243,2266,946 (122.1)6,520 (114.6)7.0Public
Anonymous submission
TBD17_1
59. online method using public detections
26.8
51.4
±11.7
52.018.5% 33.2% 24,261247,1952,985 (53.1)6,611 (117.7)1,183.8Public
Anonymous submission
PeriodMOT
60. online method using public detections
45.8
43.8
±13.2
40.914.7% 42.0% 21,941290,1944,910 (101.1)6,649 (136.9)66.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
DGCT
61. using public detections
20.4
54.3
±13.1
50.620.3% 33.7% 15,508238,2464,243 (73.4)6,684 (115.7)7.0Public
CJY, HYW, KHW @ HRI-SH
IOU17
62. using public detections
41.6
45.5
±13.6
39.415.7% 40.5% 19,993281,6435,988 (119.6)7,404 (147.8)1,522.9Public
E. Bochinski, V. Eiselein, T. Sikora. High-Speed Tracking-by-Detection Without Using Image Information. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
GMPHD_KCF
63. online method using public detections
53.2
39.6
±13.6
36.68.8% 43.3% 50,903284,2285,811 (117.1)7,414 (149.4)3.3Public
T. Kutschbach, E. Bochinski, V. Eiselein, T. Sikora. Sequential Sensor Fusion Combining Probability Hypothesis Density and Kernelized Correlation Filters for Multi-Object Tracking in Video Data. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
DH_TRK
64. using public detections
22.8
54.1
±13.0
49.221.6% 28.4% 36,196216,6705,918 (96.1)7,760 (126.0)1,775.7Public
Anonymous submission
YT_T
65. online method using public detections
46.3
45.4
±13.4
40.316.0% 35.7% 25,425275,0507,652 (149.3)8,249 (160.9)11.4Public
Anonymous submission
L_SORT
66. using public detections
40.8
45.0
±14.0
46.012.2% 41.1% 19,967287,2293,294 (67.1)8,292 (168.9)102.6Public
Anonymous submission
dcor
67. online method using public detections
43.2
45.0
±14.2
34.015.4% 38.2% 30,231275,2654,801 (93.7)8,498 (165.9)44.4Public
Anonymous submission
ZM
68. online method using public detections
52.8
43.5
±13.9
32.614.5% 39.9% 25,083284,4059,197 (185.4)8,849 (178.4)14.4Public
Anonymous submission
PHD_GSDL17
69. online method using public detections
36.6
48.0
±13.6
49.617.1% 35.6% 23,199265,9543,998 (75.6)8,886 (168.1)6.7Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
MTDF17
70. online method using public detections
37.8
49.6
±13.9
45.218.9% 33.1% 37,124241,7685,567 (97.4)9,260 (162.0)1.2Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw. FragHzDetector
BU_CV
71. online method using public detections
45.3
42.8
±14.4
32.315.8% 36.1% 40,573271,83810,118 (195.2)9,426 (181.9)17.8Public
Anonymous submission
IDOHMPT
72. online method using public detections
42.1
46.0
±13.1
44.116.8% 36.6% 30,873268,2215,768 (109.9)9,663 (184.2)8.1Public
Anonymous submission
SNM17
73. online method using public detections
46.5
46.8
±13.8
43.416.2% 37.1% 25,104271,0424,213 (81.1)9,891 (190.3)0.8Public
Anonymous submission
ORCtracker
74. online method using public detections
33.7
50.7
±13.7
43.117.0% 35.2% 20,440249,7918,069 (144.8)11,188 (200.8)3,760.7Public
C. Deniz Cicek(Cortexica Vision System)
terry_T
75. online method using public detections
57.8
2.5
±6.9
12.10.4% 83.9% 96,372448,0055,756 (279.4)11,270 (547.1)34.7Public
Anonymous submission
GM_PHD
76. online method using public detections
49.2
36.4
±14.1
33.94.1% 57.3% 23,723330,7674,607 (111.3)11,317 (273.5)38.4Public
V. Eiselein, D. Arp, M. Pätzold, T. Sikora. Real-time Multi-Human Tracking using a Probability Hypothesis Density Filter and multiple detectors. In 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2012.
ReDetPast
77. online method using public detections
49.4
44.3
±14.8
34.917.3% 36.7% 32,113271,34310,962 (211.2)11,733 (226.0)3.3Public
Anonymous submission
reID2track
78. online method using public detections
48.3
44.6
±14.3
39.915.8% 39.7% 22,451284,2136,134 (123.6)13,786 (277.8)9.0Public
Anonymous submission
TM_track
79. online method using public detections
51.6
44.4
±14.6
43.915.8% 38.5% 26,067279,8328,038 (159.5)14,105 (279.8)2.5Public
Anonymous submission

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
21177572355564228

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT17-03-SDP

MOT17-03-SDP

(69.5% MOTA)

MOT17-03-FRCNN

MOT17-03-FRCNN

(56.3% MOTA)

MOT17-06-SDP

MOT17-06-SDP

(49.8% MOTA)

...

...

MOT17-14-DPM

MOT17-14-DPM

(20.6% MOTA)

MOT17-14-FRCNN

MOT17-14-FRCNN

(20.1% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.