MOT17 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!


Benchmark Statistics

TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
Response17
1. using public detections
61.2
±14.3
63.236.7% 22.0% 55,168159,9863,589 (50.1)7,640 (106.6)5.9Public
Anonymous submission
GNNT
2. online method using public detections
-523.7
±1,341.9
9.033.6% 27.2% 3,318,414185,81915,019 (223.9)4,763 (71.0)7.6Public
Anonymous submission
ISE_MOT17R
3. online method using public detections
60.1
±11.0
56.428.5% 28.1% 23,168199,4832,556 (39.5)3,182 (49.2)7.2Public
MIFT
Lif_T
4. using public detections
60.5
±15.2
65.627.0% 33.6% 14,966206,6191,189 (18.8)3,476 (54.8)0.5Public
Anonymous submission
ISDH_HDAv2
5. online method using public detections
54.5
±14.5
65.926.4% 32.1% 46,693207,0933,010 (47.6)6,000 (94.8)3.6Public
MM-008988/ IEEE Transactions on Multimedia
ISE_MOT
6. online method using public detections
58.6
±10.5
54.727.0% 29.8% 23,033208,0452,368 (37.5)3,247 (51.4)16.3Public
Anonymous submission
FFT
7. online method using public detections
56.5
±15.7
51.026.2% 26.7% 23,746215,9715,672 (91.9)5,474 (88.7)1.8Public
Anonymous submission
TriplDSort
8. using public detections
50.7
±15.3
50.520.3% 36.6% 51,739222,2124,397 (72.5)7,352 (121.3)0.6Public
Anonymous submission
MPNTrack17
9. using public detections
55.7
±13.2
59.127.2% 34.4% 25,013223,5311,433 (23.7)3,122 (51.7)4.2Public
Anonymous submission
TCT4
10. online method using public detections
50.7
±15.4
50.924.5% 25.6% 46,638224,9556,543 (108.8)7,968 (132.5)14.1Public
Anonymous submission
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
MFT
11. online method using public detections
53.1
±16.1
50.120.4% 39.4% 35,295225,6063,681 (61.3)6,271 (104.5)0.7Public
Anonymous submission
TARCA
12. online method using public detections
55.9
±13.3
58.124.2% 35.9% 20,141227,1511,784 (29.9)3,741 (62.6)6.9Public
Anonymous submission
LSST17
13. using public detections
54.7
±12.9
62.320.4% 40.1% 26,091228,4341,243 (20.9)3,726 (62.6)1.5Public
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification
cnt_klt
14. using public detections
48.0
±11.8
57.819.0% 31.6% 63,207228,7831,215 (20.4)4,134 (69.5)59.2Public
Anonymous submission
CoCT
15. online method using public detections
50.1
±12.2
55.623.9% 35.4% 49,887229,3912,075 (35.0)4,304 (72.5)57.8Public
Anonymous submission
GMOT
16. using public detections
55.4
±12.2
57.922.7% 34.7% 20,608229,5111,403 (23.7)2,765 (46.6)5.9Public
LXD, KHW @ HRI-SH
track_bin
17. online method using public detections
57.2
±13.3
54.822.6% 34.9% 9,462229,7922,353 (39.7)3,122 (52.7)0.7Public
Anonymous submission
SCNet
18. online method using public detections
53.2
±15.4
54.920.0% 32.1% 30,440231,1092,621 (44.4)6,031 (102.2)1.0Public
Anonymous submission
TrajTrack
19. online method using public detections
56.0
±12.9
57.222.6% 35.1% 14,378231,2122,546 (43.1)3,452 (58.5)1.4Public
Anonymous submission
JBNOT
20. using public detections
52.6
±12.3
50.819.7% 35.8% 31,572232,6593,050 (51.9)3,792 (64.5)5.4Public
R. Henschel, Y. Zou, B. Rosenhahn. Multiple People Tracking using Body and Joint Detections. In CVPRW, 2019.
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
MOT_TBC
21. using public detections
53.9
±15.7
50.020.2% 36.7% 24,584232,6702,945 (50.1)4,612 (78.5)6.7Public
Anonymous submission
eTC17
22. using public detections
51.9
±12.4
58.123.1% 35.5% 36,164232,7832,288 (38.9)3,071 (52.3)0.7Public
G. Wang, Y. Wang, H. Zhang, R. Gu, J. Hwang. Exploit the connectivity: Multi-object tracking with trackletnet. In Proceedings of the 27th ACM International Conference on Multimedia, 2019.
Alex1
23. online method using public detections
56.1
±14.9
55.022.1% 34.9% 12,627232,9562,097 (35.7)3,398 (57.9)22.8Public
Anonymous submission
track_bnw
24. online method using public detections
56.7
±13.4
52.123.1% 34.5% 8,895233,2062,351 (40.1)3,155 (53.8)0.7Public
Anonymous submission
overlap
25. using public detections
51.5
±13.1
55.623.0% 36.1% 38,322233,2751,860 (31.7)2,935 (50.0)66.9Public
Anonymous submission
TT17
26. using public detections
54.9
±12.8
63.124.4% 38.1% 20,236233,2951,088 (18.5)2,392 (40.8)2.5Public
TIP-21754-2019
MCLT17
27. using public detections
54.2
±12.3
63.524.0% 38.1% 23,602233,7831,208 (20.6)2,394 (40.9)66.9Public
Anonymous submission
ResTestV2
28. using public detections
52.0
±16.4
50.919.2% 36.3% 33,320234,4812,836 (48.5)4,835 (82.7)66.9Public
Anonymous submission
SFS
29. online method using public detections
50.0
±12.2
51.819.2% 33.6% 44,810234,5502,993 (51.2)6,858 (117.4)0.9Public
Anonymous submission
CRF_TRA
30. using public detections
53.1
±12.2
53.724.2% 30.7% 27,194234,9912,518 (43.2)4,918 (84.3)1.4Public
Anonymous submission
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
DS_MOT
31. online method using public detections
56.1
±15.8
52.721.1% 35.4% 8,866235,4493,609 (61.9)3,777 (64.8)10.0Public
Anonymous submission
Tracktor++v2
32. online method using public detections
56.3
±13.3
55.121.1% 35.3% 8,866235,4491,987 (34.1)3,763 (64.6)1.5Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
ReTracktor
33. using public detections
55.1
±14.0
52.821.4% 34.9% 15,489235,6942,119 (36.4)4,725 (81.1)0.8Public
Anonymous submission
TAR_1
34. online method using public detections
51.6
±11.9
41.421.7% 28.7% 33,514235,8593,629 (62.4)5,949 (102.2)5.6Public
Anonymous submission
SMOT_no
35. online method using public detections
52.9
±12.3
54.118.7% 32.8% 26,703236,3462,702 (46.5)6,340 (109.1)4.9Public
Anonymous submission
eHAF17
36. using public detections
51.8
±13.2
54.723.4% 37.9% 33,212236,7721,834 (31.6)2,739 (47.2)0.7Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
IDGA
37. using public detections
52.6
±13.4
61.323.6% 40.2% 29,049236,8301,402 (24.2)2,613 (45.0)59.2Public
Anonymous submission
ENFT17
38. using public detections
52.8
±13.1
57.123.1% 36.8% 26,754237,9091,667 (28.8)2,557 (44.2)0.5Public
BUAA
DAIST_
39. online method using public detections
52.1
±12.5
53.819.7% 33.6% 29,931237,9132,689 (46.5)5,600 (96.8)6.9Public
Anonymous submission
YoloSort
40. online method using public detections
29.5
±24.1
41.715.0% 36.4% 154,747238,2414,888 (84.6)4,952 (85.7)14.4Public
Anonymous submission
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
HTBT
41. using public detections
52.3
±13.3
54.522.5% 36.4% 28,743238,2681,959 (33.9)2,973 (51.5)0.4Public
Anonymous submission
MMHT17
42. online method using public detections
52.8
±12.9
53.320.3% 37.5% 25,401238,4132,596 (45.0)4,103 (71.1)37.2Public
Anonymous submission
TCT
43. online method using public detections
47.5
±27.1
49.323.2% 28.8% 52,209238,7165,541 (96.0)7,368 (127.7)14.1Public
Anonymous submission
HDTR
44. using public detections
54.1
±11.4
48.423.3% 34.8% 18,002238,8181,895 (32.9)2,693 (46.7)1.8Public
M. Babaee, A. Athar, G. Rigoll. Multiple People Tracking Using Hierarchical Deep Tracklet Re-identification. In arXiv preprint arXiv:1811.04091, 2018.
TLO_MHT
45. online method using public detections
53.3
±12.9
53.320.0% 38.7% 22,161238,9592,434 (42.2)4,089 (70.9)2.0Public
Anonymous submission
UTA
46. online method using public detections
53.1
±11.7
54.421.5% 31.8% 22,893239,5342,251 (39.1)6,192 (107.6)5.0Public
Anonymous submission
SMOTe
47. online method using public detections
52.1
±12.1
53.818.4% 33.3% 27,571239,7242,691 (46.8)6,134 (106.7)1.0Public
Anonymous submission
CMT
48. using public detections
51.8
±12.9
60.719.6% 42.8% 29,528240,9601,217 (21.2)2,008 (35.0)6.5Public
#Submission: TIP-21190-2019
AReid17
49. online method using public detections
51.4
±12.2
53.919.2% 32.3% 30,079241,3642,993 (52.3)6,373 (111.4)33.7Public
Anonymous submission
TOPA
50. online method using public detections
51.8
±13.5
53.419.6% 33.1% 27,603241,5462,668 (46.7)5,790 (101.2)443.9Public
Anonymous submission
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
MTDF17
51. online method using public detections
49.6
±13.9
45.218.9% 33.1% 37,124241,7685,567 (97.4)9,260 (162.0)1.2Public
Z. Fu, F. Angelini, J. Chambers, S. Naqvi. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. In IEEE Transactions on Multimedia, 2019.
GNN_tracktor
52. online method using public detections
54.4
±12.9
54.117.8% 37.4% 12,655241,8682,660 (46.6)3,991 (69.9)1.7Public
Anonymous submission
STCG17
53. using public detections
51.1
±12.9
54.520.4% 38.6% 32,258241,9161,702 (29.8)2,483 (43.5)66.9Public
Anonymous submission
LSST17O
54. online method using public detections
52.7
±13.3
57.917.9% 36.6% 22,512241,9362,167 (37.9)7,443 (130.3)1.8Public
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification
TPM
55. using public detections
54.2
±13.0
52.622.8% 37.5% 13,739242,7301,824 (32.0)2,472 (43.4)0.8Public
Anonymous submission
MOLF
56. online method using public detections
50.9
±12.3
46.718.3% 34.6% 29,398242,8374,535 (79.6)5,343 (93.8)30.5Public
Anonymous submission
SNet_pub
57. online method using public detections
51.7
±12.0
53.418.0% 33.5% 26,809243,0662,735 (48.0)6,157 (108.2)4.9Public
Anonymous submission
DGCT
58. using public detections
54.5
±13.1
51.321.0% 35.4% 10,471243,1432,865 (50.3)4,889 (85.9)7.0Public
CJY, HYW, KHW @ HRI-SH
YOONKJ17
59. online method using public detections
51.4
±13.5
54.021.2% 37.3% 29,051243,2022,118 (37.2)3,072 (54.0)3.4Public
K. YOON, J. GWAK, Y. SONG, Y. YOON, M. JEON. OneShotDA: Online Multi-object Tracker with One-shot-learning-based Data Association. In IEEE Access, 2020.
baitrack
60. using public detections
37.6
±19.4
20.321.0% 30.9% 99,085244,0018,808 (155.2)6,708 (118.2)6.4Public
Anonymous submission
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
TTL
61. online method using public detections
52.3
±12.9
51.319.3% 38.2% 21,617244,5012,779 (49.0)4,290 (75.7)21.5Public
Anonymous submission
TLO17
62. online method using public detections
52.6
±12.9
51.319.5% 38.2% 20,089244,9302,530 (44.7)4,170 (73.7)25.2Public
Anonymous submission
OMHT
63. online method using public detections
52.6
±12.9
51.919.3% 38.0% 20,153244,9982,552 (45.1)4,148 (73.3)37.2Public
Anonymous submission
PointMOT17
64. using public detections
52.2
±13.3
50.822.4% 40.0% 22,012245,2772,134 (37.8)2,652 (46.9)2.2Public
Anonymous submission
MOT_HY
65. using public detections
47.3
±121.2
49.417.2% 33.8% 46,875246,0614,231 (75.0)8,188 (145.2)2.0Public
Anonymous submission
PPMOT
66. using public detections
52.4
±13.4
50.822.4% 40.0% 20,176246,1582,224 (39.5)2,769 (49.1)2.3Public
Anonymous submission
MOTPP17
67. using public detections
52.4
±15.4
50.822.4% 40.0% 19,922246,1832,223 (39.4)2,769 (49.1)35.5Public
Anonymous submission
PV
68. online method using public detections
52.8
±14.1
51.819.7% 34.0% 15,884246,9393,711 (66.0)8,757 (155.7)3.5Public
Anonymous submission
TppNoFPN
69. using public detections
52.4
±15.3
52.618.5% 37.2% 18,635247,1042,726 (48.5)5,461 (97.2)4.2Public
Anonymous submission
EDMT17
70. using public detections
50.0
±13.9
51.321.6% 36.3% 32,279247,2972,264 (40.3)3,260 (58.0)0.6Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
MOT_AF
71. online method using public detections
53.5
±13.4
55.619.2% 37.6% 12,867247,8161,672 (29.8)3,516 (62.7)25.2Public
Anonymous submission
jCC
72. using public detections
51.2
±14.5
54.520.9% 37.0% 25,937247,8221,802 (32.1)2,984 (53.2)1.8Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
ReID_Seq
73. online method using public detections
51.4
±12.7
49.220.3% 34.1% 23,045247,8853,226 (57.5)4,148 (74.0)14.0Public
Anonymous submission
FWT
74. using public detections
51.3
±13.1
47.621.4% 35.2% 24,101247,9212,648 (47.2)4,279 (76.3)0.2Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
Tracktor++
75. online method using public detections
53.5
±14.5
52.319.5% 36.6% 12,201248,0472,072 (37.0)4,611 (82.3)1.5Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
AFN17
76. using public detections
51.5
±13.0
46.920.6% 35.5% 22,391248,4202,593 (46.3)4,308 (77.0)1.8Public
H. Shen, L. Huang, C. Huang, W. Xu. Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. In CoRR, 2018.
STRN_MOT17
77. online method using public detections
50.9
±11.6
56.018.9% 33.8% 25,295249,3652,397 (43.0)9,363 (167.8)13.8Public
J. Xu, Y. Cao, Z. Zhang, H. Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. In ICCV, 2019.
MOTF17
78. using public detections
52.0
±13.2
50.520.1% 40.4% 19,222249,4642,293 (41.1)3,297 (59.1)2.2Public
Anonymous submission
LSMT
79. online method using public detections
51.9
±12.0
53.517.4% 35.0% 18,672250,6622,257 (40.6)5,733 (103.2)8.9Public
Anonymous submission
MOTDT17
80. online method using public detections
50.9
±11.9
52.717.5% 35.7% 24,069250,7682,474 (44.5)5,317 (95.7)18.3Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
tianyi
81. using public detections
50.0
±13.7
51.020.5% 35.6% 27,839251,1483,312 (59.7)6,234 (112.3)5.9Public
Anonymous submission
PPMOT17
82. using public detections
51.5
±13.0
47.821.8% 40.1% 19,821251,4952,492 (45.0)2,986 (53.9)35.5Public
Anonymous submission
PP17
83. using public detections
51.5
±13.0
47.821.8% 40.1% 19,821251,4952,492 (45.0)2,986 (53.9)1.9Public
Anonymous submission
SRPN
84. online method using public detections
47.8
±13.2
41.417.0% 41.7% 38,279251,9894,325 (78.2)5,355 (96.8)11.8Public
Anonymous submission
NOTA
85. using public detections
51.3
±11.7
54.517.1% 35.4% 20,148252,5312,285 (41.4)5,798 (105.0)17.8Public
L. Chen, H. Ai, R. Chen, Z. Zhuang. Aggregate Tracklet Appearance Features for Multi-Object Tracking. In IEEE Signal Processing Letters, 2019.
MHT_DAM
86. using public detections
50.7
±13.7
47.220.8% 36.9% 22,875252,8892,314 (41.9)2,865 (51.9)0.9Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
DEEP_TAMA
87. online method using public detections
50.3
±13.3
53.519.2% 37.5% 25,479252,9962,192 (39.7)3,978 (72.1)1.5Public
Y. Yoon, D. Kim, K. Yoon, Y. Song, M. Jeon. Online Multiple Pedestrian Tracking using Deep Temporal Appearance Matching Association. In arXiv:1907.00831, 2019.
Q_ls
88. online method using public detections
50.2
±14.4
43.619.7% 37.3% 23,143253,1514,414 (80.1)6,112 (110.9)1.8Public
Anonymous submission
DTBasline
89. online method using public detections
51.1
±11.7
53.416.7% 35.5% 20,309253,2452,549 (46.2)5,910 (107.2)22.2Public
Anonymous submission
MOT17ZH
90. online method using public detections
51.1
±13.7
53.416.7% 35.5% 20,309253,2452,549 (46.2)5,910 (107.2)3.7Public
Anonymous submission
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
FAMNet
91. online method using public detections
52.0
±12.0
48.719.1% 33.4% 14,138253,6163,072 (55.8)5,318 (96.6)0.0Public
P. Chu, H. Ling. FAMNet: Joint Learning of Feature, Affinity and Multi-dimensional Assignment for Online Multiple Object Tracking. In ICCV, 2019.
Seq2Seq
92. using public detections
52.7
±12.1
49.417.7% 38.2% 10,819253,8902,396 (43.6)3,374 (61.3)2.6Public
Anonymous submission
MOCL
93. online method using public detections new
49.5
±14.0
43.420.7% 35.6% 25,373254,1315,164 (94.0)5,787 (105.3)148.0Public
ECCV-20/4696
TTracker
94. online method using public detections
46.2
±14.0
44.021.0% 35.6% 44,854254,4384,258 (77.6)6,307 (114.9)29.6Public
Anonymous submission
TLMHT
95. using public detections
50.6
±12.5
56.517.6% 43.4% 22,213255,0301,407 (25.7)2,079 (37.9)2.6Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
SOTD_MC
96. online method using public detections
48.4
±15.0
45.519.4% 35.9% 33,525255,0912,531 (46.2)4,944 (90.2)67.0Public
Anonymous submission
GMPHDOGM17
97. online method using public detections
49.9
±13.6
47.119.7% 38.0% 24,024255,2773,125 (57.1)3,540 (64.6)30.7Public
Y. Song, K. Yoon, Y. Yoon, K. Yow, M. Jeon. Online Multi-Object Tracking with GMPHD Filter and Occlusion Group Management. In IEEE Access, 2019.
DeepMP17
98. using public detections
50.4
±13.1
52.318.8% 38.7% 22,535255,3561,868 (34.1)3,473 (63.4)7.4Public
GMPHD_Rd17
99. online method using public detections
46.8
±14.7
54.119.7% 33.3% 38,452257,6783,865 (71.1)8,097 (149.0)30.8Public
N. Baisa. Occlusion-robust Online Multi-object Visual Tracking using a GM-PHD Filter with a CNN-based Re-identification. In , 2019.
PHD_GM
100. online method using public detections
48.8
±13.4
43.219.1% 35.2% 26,260257,9714,407 (81.2)6,448 (118.8)22.3Public
R. Sanchez-Matilla, A. Cavallaro. A predictor of moving objects for First-Person vision. In Proceedings of IEEE International Conference Image Processing, 2019.
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
OST
101. using public detections
49.7
±14.0
50.417.0% 36.7% 21,811258,6493,077 (56.8)4,339 (80.1)1.7Public
Anonymous submission
lbc_mot
102. using public detections
49.8
±14.3
52.320.3% 36.2% 20,963259,5382,638 (48.9)5,303 (98.2)66.9Public
Anonymous submission
2MPT
103. using public detections
48.1
±14.2
52.917.4% 39.6% 30,650260,1331,860 (34.5)2,784 (51.7)2.7Public
Anonymous submission
SiaIOU
104. using public detections
48.5
±16.7
48.518.9% 38.8% 26,867260,2783,152 (58.5)4,391 (81.5)8.3Public
Anonymous submission
JOINT_TRAC
105. using public detections
29.4
±17.6
34.512.6% 42.3% 132,192260,8085,397 (100.4)10,704 (199.0)66.9Public
Anonymous submission
RFTracking
106. online method using public detections
48.5
±14.8
44.917.7% 38.6% 25,739261,7103,089 (57.6)4,813 (89.8)66.9Public
Anonymous submission
wangs
107. online method using public detections
48.5
±14.2
45.018.3% 38.8% 25,428261,7553,233 (60.3)4,941 (92.2)66.9Public
Anonymous submission
KVIOU
108. online method using public detections
46.6
±14.2
44.017.3% 38.1% 34,838262,0084,379 (81.8)7,844 (146.4)29.6Public
Anonymous submission
DeepMOTRPN
109. online method using public detections
48.1
±14.5
43.017.6% 38.6% 26,490262,5783,696 (69.1)5,353 (100.1)4.9Public
Anonymous submission
DualAtte
110. online method using public detections
48.4
±14.5
43.717.6% 39.0% 24,915262,6543,423 (64.0)5,192 (97.1)0.3Public
Anonymous submission
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
LT17
111. online method using public detections
47.7
±16.6
45.217.3% 36.0% 27,856263,0624,042 (75.7)9,183 (172.0)7.2Public
Anonymous submission
DMAN
112. online method using public detections
48.2
±12.3
55.719.3% 38.3% 26,218263,6082,194 (41.2)5,378 (100.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
Lab031
113. using public detections
46.9
±16.2
48.117.7% 36.1% 31,634263,9383,795 (71.3)10,498 (197.3)9.4Public
Anonymous submission
AM_ADM17
114. online method using public detections
48.1
±13.8
52.113.4% 39.7% 25,061265,4952,214 (41.8)5,027 (94.9)5.7Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
TPbase17
115. online method using public detections
43.3
±15.0
48.216.2% 36.6% 49,992265,8154,194 (79.3)12,103 (228.8)22.2Public
Anonymous submission
PHD_GSDL17
116. online method using public detections
48.0
±13.6
49.617.1% 35.6% 23,199265,9543,998 (75.6)8,886 (168.1)6.7Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
JDT
117. online method using public detections
47.4
±12.2
50.116.8% 37.2% 26,910267,3312,760 (52.5)6,211 (118.0)35.1Public
Anonymous submission
DAM_MOT
118. online method using public detections
47.0
±12.6
48.716.9% 38.1% 28,933267,8962,140 (40.7)2,756 (52.5)18.7Public
Multi Object Tracking using Deep Structural Cost Minimization in Data Association
MHT_bLSTM
119. using public detections
47.5
±12.6
51.918.2% 41.7% 25,981268,0422,069 (39.4)3,124 (59.5)1.9Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
OTCD_1
120. online method using public detections
48.6
±13.7
47.916.2% 41.2% 18,499268,2043,502 (66.7)5,588 (106.5)15.5Public
Q. Liu, B. Liu, Y. Wu, W. Li, N. Yu. Real-Time Online Multi-Object Tracking in Compressed Domain. In IEEE Access, 2019.
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
RegTL
121. using public detections
48.1
±13.7
41.618.1% 39.8% 20,850268,3633,386 (64.6)4,524 (86.3)17.8Public
Anonymous submission
HAM_SADF17
122. online method using public detections
48.3
±13.2
51.117.1% 41.7% 20,967269,0381,871 (35.8)3,020 (57.7)5.0Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
MASS
123. online method using public detections
46.9
±14.1
46.016.9% 36.3% 25,733269,1164,478 (85.6)11,994 (229.3)17.1Public
H. Karunasekera, H. Wang, H. Zhang. Multiple Object Tracking With Attention to Appearance, Structure, Motion and Size. In IEEE Access, 2019.
FPSN
124. online method using public detections
44.9
±13.9
48.416.5% 35.8% 33,757269,9527,136 (136.8)14,491 (277.8)10.1Public
S. Lee, E. Kim. Multiple Object Tracking via Feature Pyramid Siamese Networks. In IEEE ACCESS, 2018.
MOTbyReID
125. online method using public detections
43.6
±13.7
37.117.6% 36.3% 35,725270,03612,347 (236.8)11,408 (218.8)2.5Public
Anonymous submission
SNM17
126. online method using public detections
46.8
±13.8
43.416.2% 37.1% 25,104271,0424,213 (81.1)9,891 (190.3)0.8Public
Anonymous submission
E2EM
127. online method using public detections
47.5
±14.5
48.816.5% 37.5% 20,655272,1873,632 (70.2)12,712 (245.6)29.6Public
Anonymous submission
PHD_LMP
128. online method using public detections
45.9
±13.1
42.515.5% 37.9% 27,946272,1964,977 (96.2)6,985 (135.0)29.4Public
Anonymous submission
zxbtk17
129. online method using public detections
45.1
±14.7
40.017.7% 31.8% 33,186273,5313,303 (64.1)8,148 (158.1)8.3Public
Anonymous submission
AEb
130. using public detections
48.1
±13.6
46.017.7% 39.5% 16,839273,8192,350 (45.7)5,275 (102.5)66.9Public
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
QiMOT
131. online method using public detections
47.2
±13.1
40.815.5% 39.9% 18,907274,8284,320 (84.2)5,917 (115.4)1.8Public
Anonymous submission
dcor
132. online method using public detections
45.0
±14.2
34.015.4% 38.2% 30,231275,2654,801 (93.7)8,498 (165.9)44.4Public
Anonymous submission
MHT_ReID7
133. using public detections
46.5
±13.7
46.918.8% 40.3% 22,203276,3743,386 (66.4)8,521 (167.0)1.6Public
Anonymous submission
HISP_T17
134. online method using public detections
44.6
±14.2
38.815.1% 38.8% 25,478276,39510,617 (208.1)7,487 (146.8)4.7Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
Alex
135. online method using public detections
47.6
±14.2
49.813.2% 41.4% 16,028277,1102,731 (53.7)8,481 (166.7)0.2Public
Anonymous submission
GF
136. online method using public detections
45.0
±13.9
39.115.0% 39.0% 22,387277,33510,397 (204.5)7,421 (145.9)9.9Public
Anonymous submission
HISP_DAL17
137. online method using public detections
45.4
±13.9
39.914.8% 39.2% 21,820277,4738,727 (171.7)7,147 (140.6)3.2Public
N. Baisa. Robust Online Multi-target Visual Tracking using a HISP Filter with Discriminative Deep Appearance Learning. In CoRR, 2019.
EDA_GNN
138. online method using public detections
45.5
±13.8
40.515.6% 40.6% 25,685277,6634,091 (80.5)5,579 (109.8)39.3Public
Paper ID 2713
Umot
139. online method using public detections
43.9
±13.8
37.815.2% 38.9% 28,596278,6219,363 (185.0)11,371 (224.6)19.7Public
Anonymous submission
GOTURN_3B
140. online method using public detections
44.3
±13.7
38.513.0% 43.2% 30,302279,1444,861 (96.2)5,277 (104.4)48.6Public
Anonymous submission
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
UNS20
141. online method using public detections
46.5
±13.6
47.716.3% 43.1% 19,283280,7881,967 (39.2)3,103 (61.8)12.2Public
Anonymous submission
IOU17
142. using public detections
45.5
±13.6
39.415.7% 40.5% 19,993281,6435,988 (119.6)7,404 (147.8)1,522.9Public
E. Bochinski, V. Eiselein, T. Sikora. High-Speed Tracking-by-Detection Without Using Image Information. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
GoturnM17
143. online method using public detections
38.3
±9.0
25.79.4% 47.1% 55,381282,67010,328 (207.0)9,849 (197.4)11.8Public
Anonymous submission
DCORV2
144. online method using public detections
45.5
±13.9
36.114.6% 40.4% 21,161282,9013,592 (72.0)7,696 (154.4)35.5Public
Anonymous submission
AEb_O
145. online method using public detections
46.4
±13.9
44.916.5% 41.4% 17,030283,2652,266 (45.5)5,053 (101.5)1.8Public
Anonymous submission
GMPHD_DAL
146. online method using public detections
44.4
±13.9
36.214.9% 39.4% 19,170283,38011,137 (223.7)13,900 (279.3)3.4Public
N. Baisa. Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning. In 2019 22th International Conference on Information Fusion (FUSION), 2019.
GM_PHD_D
147. online method using public detections
44.0
±13.8
34.214.8% 39.4% 19,135283,53013,556 (272.5)13,821 (277.8)9.9Public
Anonymous submission
DAN__test
148. using public detections
43.0
±14.7
43.313.5% 40.0% 30,367283,5337,576 (152.3)14,990 (301.3)1.8Public
Anonymous submission
SAS_MOT17
149. using public detections
44.2
±12.2
57.216.1% 44.3% 29,473283,6111,529 (30.7)2,644 (53.2)4.8Public
A. Maksai, P. Fua. Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking. In CVPR, 2019.
GMPHD_KCF
150. online method using public detections
39.6
±13.5
36.68.8% 43.3% 50,903284,2285,811 (117.1)7,414 (149.4)3.3Public
T. Kutschbach, E. Bochinski, V. Eiselein, T. Sikora. Sequential Sensor Fusion Combining Probability Hypothesis Density and Kernelized Correlation Filters for Multi-Object Tracking in Video Data. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
ZM
151. online method using public detections
43.5
±13.9
32.614.5% 39.9% 25,083284,4059,197 (185.4)8,849 (178.4)14.4Public
Anonymous submission
ms_dh
152. online method using public detections
42.6
±14.6
40.113.6% 40.0% 31,878284,5287,446 (150.2)14,736 (297.3)4.0Public
Anonymous submission
DSA_MOT17
153. online method using public detections
45.0
±12.6
43.615.8% 39.2% 21,442286,4822,491 (50.6)3,824 (77.7)9.9Public
Anonymous submission
TM_track
154. online method using public detections
41.1
±14.9
32.813.2% 41.3% 27,606287,51117,408 (355.0)15,197 (309.9)2.5Public
Anonymous submission
SORT17
155. online method using public detections
43.1
±13.3
39.812.5% 42.3% 28,398287,5824,852 (99.0)7,127 (145.4)143.3Public
A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft. Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP), 2016.
GMPHD_SHA
156. online method using public detections
43.7
±12.5
39.211.7% 43.0% 25,935287,7583,838 (78.3)5,056 (103.2)9.2Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
EAMTT
157. online method using public detections
42.6
±13.3
41.812.7% 42.7% 30,711288,4744,488 (91.8)5,720 (117.0)12.0Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro. Online Multi-target Tracking with Strong and Weak Detections. In Computer Vision -- ECCV 2016 Workshops, 2016.
cascademot
158. online method using public detections
41.8
±16.0
34.215.2% 38.7% 27,816288,76811,535 (236.3)14,800 (303.2)17.8Public
Anonymous submission
c3d_Track
159. online method using public detections
41.5
±13.7
40.210.7% 48.5% 33,332292,9313,890 (80.9)11,454 (238.2)22.2Public
Anonymous submission
LM_NN
160. using public detections
45.1
±13.3
43.214.8% 46.2% 10,834296,4512,286 (48.2)2,463 (51.9)0.9Public
M. Babaee, Z. Li, G. Rigoll. A Dual CNN--RNN for Multiple People Tracking. In Neurocomputing, 2019.
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
XYHv2
161. online method using public detections
39.9
±12.4
23.89.9% 41.8% 29,713296,70412,900 (272.1)12,911 (272.3)7.8Public
Anonymous submission
GMPHD_N1Tr
162. online method using public detections
42.1
±13.2
33.911.9% 42.7% 18,214297,64610,698 (226.4)10,864 (229.9)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019.
GM_PHD
163. online method using public detections
42.1
±13.2
33.911.9% 42.7% 18,214297,64610,698 (226.4)10,864 (229.9)9.9Public
Anonymous submission
98K
164. using public detections
40.8
±17.2
37.015.6% 38.1% 32,312298,1743,514 (74.5)4,991 (105.8)17.7Public
Anonymous submission
OLGT_new
165. online method using public detections
45.7
±22.8
49.410.8% 75.5% 6,915298,2881,418 (30.1)3,641 (77.2)6.1Public
Anonymous submission
DS_TW_F
166. online method using public detections
45.7
±27.0
50.910.8% 75.4% 6,528298,3681,329 (28.2)3,180 (67.5)66.9Public
Anonymous submission
D_SST_V1
167. online method using public detections
42.7
±13.9
46.111.8% 44.4% 18,861298,9895,531 (117.7)13,775 (293.0)2.3Public
Anonymous submission
CGHA_MOT
168. online method using public detections
41.2
±14.1
44.08.3% 45.9% 25,462299,1127,294 (155.2)18,655 (397.0)11.4Public
Anonymous submission
GNNMOT
169. online method using public detections
42.0
±12.8
29.312.0% 50.0% 23,294299,6944,377 (93.4)3,847 (82.1)177.6Public
Anonymous submission
CASC_MOT
170. online method using public detections
42.3
±12.8
46.89.1% 44.1% 21,035300,7973,616 (77.4)16,656 (356.7)11.4Public
Anonymous submission
TrackerMOTAIDF1MTMLFP FNID Sw.FragHzDetector
GLMBS3
171. using public detections
38.0
±13.7
32.39.3% 52.8% 38,874304,0166,963 (151.0)3,927 (85.2)4.9Public
Anonymous submission
CTRACKER
172. online method using public detections
39.4
±13.5
26.113.4% 42.5% 16,249307,90017,592 (387.2)14,508 (319.3)66.9Public
Anonymous submission
SRPN17
173. online method using public detections
40.8
±15.2
40.512.0% 48.0% 9,293321,8112,801 (65.2)7,120 (165.7)4.1Public
Anonymous submission
GM_PHD
174. online method using public detections
36.4
±14.1
33.94.1% 57.3% 23,723330,7674,607 (111.3)11,317 (273.5)38.4Public
V. Eiselein, D. Arp, M. Pätzold, T. Sikora. Real-time Multi-Human Tracking using a Probability Hypothesis Density Filter and multiple detectors. In 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2012.
MOT_BJ
175. online method using public detections
-7.3
±23.5
1.40.0% 99.1% 52,007548,5314,824 (1,734.0)8,621 (3,098.8)0.0Public
Anonymous submission
SequencesFramesTrajectoriesBoxes
21177572355564228

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT17-03-SDP

MOT17-03-SDP

(66.8% MOTA)

MOT17-03-FRCNN

MOT17-03-FRCNN

(59.7% MOTA)

MOT17-03-DPM

MOT17-03-DPM

(51.7% MOTA)

...

...

MOT17-14-DPM

MOT17-14-DPM

(21.3% MOTA)

MOT17-14-FRCNN

MOT17-14-FRCNN

(20.6% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark. The frequency is provided by the authors and not officially evaluated by the MOTChallenge.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.