MOT17 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
DH_TRK
1. using public detections
26.3
54.1
±13.0
49.221.6% 28.4% 36,196216,6705,918 (96.1)7,760 (126.0)1,775.7Public
Anonymous submission
TAR_1
2. online method using public detections
35.8
51.6
±11.9
41.421.7% 28.7% 33,514235,8593,629 (62.4)5,949 (102.2)5.6Public
Anonymous submission
Qclc
3. online method using public detections
29.9
54.0
±14.3
47.723.3% 30.7% 22,374232,2124,748 (80.7)6,022 (102.3)1.8Public
Anonymous submission
WCFMT17
4. using public detections
41.3
47.3
±16.0
52.321.9% 30.7% 43,253250,3023,556 (63.9)6,071 (109.1)1.0Public
Anonymous submission
CRF_TRA
5. using public detections
21.0
53.1
±12.1
53.724.2% 30.7% 27,194234,9912,518 (43.2)4,918 (84.3)1.8Public
Anonymous submission
HIK_MOT17
6. using public detections
19.6
53.9
±13.7
54.323.7% 32.0% 27,656230,0422,386 (40.3)4,192 (70.8)5.4Public
ISDH_HDAv2
7. online method using public detections
25.1
54.5
±14.5
65.926.4% 32.1% 46,693207,0933,010 (47.6)6,000 (94.8)3.6Public
MM-008988/ IEEE Transactions on Multimedia
ts_WCFMT
8. online method using public detections
41.8
48.4
±13.6
51.421.0% 32.5% 32,037255,4723,410 (62.3)6,351 (116.1)1.0Public
Anonymous submission
IOUT_Re
9. online method using public detections
30.7
52.7
±13.0
43.320.1% 32.6% 16,529243,2266,946 (122.1)6,520 (114.6)7.0Public
Anonymous submission
MTDF17
10. online method using public detections
43.8
49.6
±13.9
45.218.9% 33.1% 37,124241,7685,567 (97.4)9,260 (162.0)1.2Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
TOPA
11. online method using public detections
27.3
51.8
±13.5
53.419.6% 33.1% 27,603241,5462,668 (46.7)5,790 (101.2)443.9Public
Anonymous submission
TBD17_1
12. online method using public detections
30.5
51.4
±11.7
52.018.5% 33.2% 24,261247,1952,985 (53.1)6,611 (117.7)1,183.8Public
Anonymous submission
PA_MOT17
13. online method using public detections
26.0
51.6
±13.5
53.518.9% 33.5% 28,794241,7042,635 (46.1)5,808 (101.6)710.3Public
Anonymous submission
RTac
14. online method using public detections
41.4
46.3
±14.6
49.218.9% 33.5% 43,447255,1584,196 (76.6)6,056 (110.6)14.1Public
Anonymous submission
MOT_BJ
15. online method using public detections
39.5
50.4
±12.3
51.018.2% 34.1% 30,911245,8313,296 (58.4)6,279 (111.3)0.0Public
Anonymous submission
SemiOMOT
16. using public detections
26.8
52.4
±15.0
51.022.6% 34.6% 23,660242,9532,070 (36.4)3,170 (55.7)0.7Public
Anonymous submission
HDTR
17. using public detections
18.7
54.1
±11.4
48.423.3% 34.8% 18,002238,8181,895 (32.9)2,693 (46.7)1.8Public
hpmmt17
18. online method using public detections
24.2
51.2
±11.8
53.617.3% 34.9% 21,957250,8912,292 (41.3)6,108 (110.0)44,392.5Public
Anonymous submission
PV
19. online method using public detections
43.0
48.5
±14.5
48.618.2% 34.9% 27,889258,6894,173 (77.1)8,661 (159.9)3.5Public
Anonymous submission
TCF
20. online method using public detections
42.4
48.3
±13.6
48.718.9% 35.1% 36,274252,0923,530 (63.8)6,390 (115.5)6.4Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
SRPN17
21. online method using public detections
33.8
51.0
±11.7
53.516.8% 35.1% 21,011252,8082,596 (47.0)5,981 (108.4)4.1Public
Anonymous submission
FWT
22. using public detections
31.2
51.3
±13.1
47.621.4% 35.2% 24,101247,9212,648 (47.2)4,279 (76.3)0.2Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
PHD_GM
23. online method using public detections
39.9
48.8
±13.4
43.219.1% 35.2% 26,260257,9714,407 (81.2)6,448 (118.8)22.3Public
Anonymous submission
ORCtracker
24. online method using public detections
38.3
50.7
±13.7
43.117.0% 35.2% 20,440249,7918,069 (144.8)11,188 (200.8)3,760.7Public
Anonymous submission
Sn_PBC
25. using public detections
30.8
51.3
±11.7
53.417.4% 35.2% 21,255251,2562,394 (43.2)6,148 (110.8)14.8Public
Anonymous submission
DGCT
26. using public detections
19.8
54.5
±13.1
51.321.0% 35.4% 10,471243,1432,865 (50.3)4,889 (85.9)7.0Public
CJY, HYW, KHW @ HRI-SH
AFN17
27. using public detections
27.6
51.5
±13.0
46.920.6% 35.5% 22,391248,4202,593 (46.3)4,308 (77.0)1.8Public
Paper ID 4411
DTBasline
28. online method using public detections
27.2
51.1
±11.7
53.416.7% 35.5% 20,309253,2452,549 (46.2)5,910 (107.2)22.2Public
Anonymous submission
MOT_test
29. online method using public detections
27.7
51.6
±11.9
53.917.3% 35.5% 21,419249,0592,384 (42.7)5,613 (100.5)7.8Public
Anonymous submission
eTC17
30. using public detections
24.3
51.9
±12.8
58.023.5% 35.5% 37,311231,6582,294 (38.9)2,917 (49.5)0.7Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
PHD_GSDL17
31. online method using public detections
42.4
48.0
±13.6
49.617.1% 35.6% 23,199265,9543,998 (75.6)8,886 (168.1)6.7Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
NOTBD
32. using public detections
30.4
53.9
±12.7
51.221.5% 35.6% 28,912228,3562,964 (49.8)3,600 (60.5)0.3Public
Anonymous submission
YT_T
33. online method using public detections
53.3
45.4
±13.4
40.316.0% 35.7% 25,425275,0507,652 (149.3)8,249 (160.9)11.4Public
Anonymous submission
RTRC
34. online method using public detections
41.4
48.5
±14.2
48.618.7% 35.7% 34,180252,8593,490 (63.2)6,304 (114.2)9.8Public
Anonymous submission
MOTDT17
35. online method using public detections
29.9
50.9
±11.9
52.717.5% 35.7% 24,069250,7682,474 (44.5)5,317 (95.7)18.3Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
FPSN
36. online method using public detections
48.9
44.9
±13.9
48.416.5% 35.8% 33,757269,9527,136 (136.8)14,491 (277.8)10.1Public
S. Lee, E. Kim. Multiple Object Tracking via Feature Pyramid Siamese Networks. In IEEE ACCESS, 2018.
yt_face
37. online method using public detections
26.6
52.6
±13.1
51.523.0% 35.9% 23,894241,4892,047 (35.8)2,827 (49.4)2.2Public
Anonymous submission
BU_CV
38. online method using public detections
52.1
42.8
±14.4
32.315.8% 36.1% 40,573271,83810,118 (195.2)9,426 (181.9)17.8Public
Anonymous submission
EDMT17
39. using public detections
31.3
50.0
±13.9
51.321.6% 36.3% 32,279247,2972,264 (40.3)3,260 (58.0)0.6Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
TPbase17
40. online method using public detections
53.0
43.3
±15.0
48.216.2% 36.6% 49,992265,8154,194 (79.3)12,103 (228.8)22.2Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
IDOHMPT
41. online method using public detections
48.8
46.0
±13.1
44.116.8% 36.6% 30,873268,2215,768 (109.9)9,663 (184.2)8.1Public
Anonymous submission
LSST17O
42. online method using public detections
29.7
52.7
±13.3
57.917.9% 36.6% 22,512241,9362,167 (37.9)7,443 (130.3)1.8Public
Anonymous submission
IDGA
43. using public detections
28.6
49.9
±12.2
50.322.1% 36.7% 37,060243,1482,426 (42.6)3,846 (67.6)59.2Public
Anonymous submission
ReDetPast
44. online method using public detections
57.1
44.3
±14.8
34.917.3% 36.7% 32,113271,34310,962 (211.2)11,733 (226.0)3.3Public
Anonymous submission
BnW
45. online method using public detections
26.3
52.5
±15.3
52.618.7% 36.7% 19,192245,7652,822 (50.0)5,610 (99.4)2.5Public
Anonymous submission
MHT_DAM
46. using public detections
32.7
50.7
±13.7
47.220.8% 36.9% 22,875252,8892,314 (41.9)2,865 (51.9)0.9Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
jCC
47. using public detections
26.3
51.2
±14.5
54.520.9% 37.0% 25,937247,8221,802 (32.1)2,984 (53.2)1.8Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
SNM17
48. online method using public detections
53.7
46.8
±13.8
43.416.2% 37.1% 25,104271,0424,213 (81.1)9,891 (190.3)0.8Public
Anonymous submission
Q_ls
49. online method using public detections
42.5
50.2
±14.4
43.619.7% 37.3% 23,143253,1514,414 (80.1)6,112 (110.9)1.8Public
Anonymous submission
TPM
50. using public detections
24.2
54.2
±13.0
52.622.8% 37.5% 13,739242,7301,824 (32.0)2,472 (43.4)0.8Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
DEEP_TAMA
51. online method using public detections
29.7
50.3
±13.3
53.519.2% 37.5% 25,479252,9962,192 (39.7)3,978 (72.1)1.5Public
for journal submission
CMT
52. using public detections
18.8
52.0
±13.2
54.823.3% 37.7% 31,660237,5471,827 (31.6)2,738 (47.3)10.2Public
Anonymous submission
PHD_LMP
53. online method using public detections
50.8
45.9
±13.1
42.515.5% 37.9% 27,946272,1964,977 (96.2)6,985 (135.0)29.4Public
Anonymous submission
eHAF17
54. using public detections
24.8
51.8
±13.2
54.723.4% 37.9% 33,212236,7721,834 (31.6)2,739 (47.2)0.7Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
NV_MC
55. using public detections
37.1
49.1
±13.9
45.719.0% 38.0% 16,850267,9232,446 (46.6)3,196 (60.9)0.3Public
Anonymous submission
dcor
56. online method using public detections
49.8
45.0
±14.2
34.015.4% 38.2% 30,231275,2654,801 (93.7)8,498 (165.9)44.4Public
Anonymous submission
TEM
57. using public detections
41.2
49.1
±12.6
45.417.0% 38.3% 22,119261,7973,439 (64.2)3,881 (72.4)8.2Public
Anonymous submission
DMAN
58. online method using public detections
34.8
48.2
±12.3
55.719.3% 38.3% 26,218263,6082,194 (41.2)5,378 (100.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
CEMT
59. using public detections
34.9
49.3
±12.6
44.416.8% 38.5% 21,711261,8082,696 (50.3)3,409 (63.6)5.8Public
Anonymous submission
HCC
60. using public detections
37.0
44.8
±11.2
46.818.3% 38.9% 17,586292,2941,555 (32.3)2,221 (46.1)0.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
SSOMOT
61. online method using public detections
43.5
46.8
±13.1
49.215.3% 39.1% 24,041274,2572,121 (41.3)4,897 (95.3)4.9Public
Anonymous submission
TBNMF17
62. online method using public detections
32.5
50.6
±12.6
49.318.9% 39.2% 17,522258,9902,014 (37.2)4,432 (81.9)6.9Public
Anonymous submission
DSA_MOT17
63. online method using public detections
40.3
45.0
±12.6
43.615.8% 39.2% 21,442286,4822,491 (50.6)3,824 (77.7)9.9Public
Anonymous submission
AEb
64. using public detections
30.9
48.1
±13.4
46.017.7% 39.5% 16,839273,8192,350 (45.7)5,275 (102.5)66.9Public
Anonymous submission
AEb_Exp_6
65. using public detections new
31.3
48.1
±13.5
45.918.1% 39.5% 17,371273,1172,352 (45.6)4,994 (96.8)66.9Public
Anonymous submission
STDIC
66. online method using public detections
49.0
44.1
±13.6
45.913.2% 39.6% 46,126266,4492,992 (56.7)5,143 (97.4)17,757.0Public
Anonymous submission
AM_ADM17
67. online method using public detections
36.1
48.1
±13.8
52.113.4% 39.7% 25,061265,4952,214 (41.8)5,027 (94.9)5.7Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
reID2track
68. online method using public detections
55.8
44.6
±14.3
39.915.8% 39.7% 22,451284,2136,134 (123.6)13,786 (277.8)9.0Public
Anonymous submission
ZM
69. online method using public detections
60.3
43.5
±13.9
32.614.5% 39.9% 25,083284,4059,197 (185.4)8,849 (178.4)14.4Public
Anonymous submission
QiMOT
70. online method using public detections
50.1
47.2
±13.1
40.815.5% 39.9% 18,907274,8284,320 (84.2)5,917 (115.4)1.8Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
LSST17
71. using public detections
24.8
54.7
±12.9
62.320.4% 40.1% 26,091228,4341,243 (20.9)3,726 (62.6)1.5Public
Anonymous submission
IOU17
72. using public detections
47.4
45.5
±13.6
39.415.7% 40.5% 19,993281,6435,988 (119.6)7,404 (147.8)1,522.9Public
E. Bochinski, V. Eiselein, T. Sikora. High-Speed Tracking-by-Detection Without Using Image Information. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
EDA_GNN
73. online method using public detections
45.8
45.5
±13.8
40.515.6% 40.6% 25,685277,6634,091 (80.5)5,579 (109.8)39.3Public
Paper ID 2713
L_SORT
74. using public detections
46.8
45.0
±14.0
46.012.2% 41.1% 19,967287,2293,294 (67.1)8,292 (168.9)102.6Public
Anonymous submission
TM_track
75. online method using public detections
66.3
41.1
±14.9
32.813.2% 41.3% 27,606287,51117,408 (355.0)15,197 (309.9)2.5Public
Anonymous submission
MHT_bLSTM
76. using public detections
37.6
47.5
±12.6
51.918.2% 41.7% 25,981268,0422,069 (39.4)3,124 (59.5)1.9Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
HAM_SADF17
77. online method using public detections
33.5
48.3
±13.2
51.117.1% 41.7% 20,967269,0381,871 (35.8)3,020 (57.7)5.0Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
XYHv2
78. online method using public detections
64.3
39.9
±12.4
23.89.9% 41.8% 29,713296,70412,900 (272.1)12,911 (272.3)66.9Public
Anonymous submission
PeriodMOT
79. online method using public detections
52.2
43.8
±13.2
40.914.7% 42.0% 21,941290,1944,910 (101.1)6,649 (136.9)66.9Public
Anonymous submission
COMOT
80. online method using public detections
38.8
46.4
±13.5
48.514.8% 42.2% 20,752279,8162,069 (41.0)4,606 (91.4)5.0Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
GM_PHD
81. online method using public detections
56.1
42.1
±13.0
33.911.9% 42.7% 18,214297,64610,698 (226.4)10,864 (229.9)9.9Public
Anonymous submission
EAMTT
82. online method using public detections
53.1
42.6
±13.3
41.812.7% 42.7% 30,711288,4744,488 (91.8)5,720 (117.0)12.0Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro. Online Multi-target Tracking with Strong and Weak Detections. In Computer Vision -- ECCV 2016 Workshops, 2016.
GMPHD_KCF
83. online method using public detections
61.8
39.6
±13.6
36.68.8% 43.3% 50,903284,2285,811 (117.1)7,414 (149.4)3.3Public
T. Kutschbach, E. Bochinski, V. Eiselein, T. Sikora. Sequential Sensor Fusion Combining Probability Hypothesis Density and Kernelized Correlation Filters for Multi-Object Tracking in Video Data. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
TLMHT
84. using public detections
32.8
50.6
±12.5
56.517.6% 43.4% 22,213255,0301,407 (25.7)2,079 (37.9)2.6Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
SAS_MOT17
85. using public detections
42.0
44.2
±12.2
57.216.1% 44.3% 29,473283,6111,529 (30.7)2,644 (53.2)4.8Public
Anonymous submission
REQT
86. online method using public detections
51.7
43.9
±14.2
47.413.1% 45.8% 34,309279,0302,986 (59.1)5,402 (106.9)64.1Public
Anonymous submission
LM_NN
87. using public detections
43.3
45.1
±13.3
43.214.8% 46.2% 10,834296,4512,286 (48.2)2,463 (51.9)2.5Public
NEUCOM-D-18-03230
AEb_Exp_4
88. using public detections
44.3
38.6
±16.8
39.314.8% 46.4% 16,841327,2172,206 (52.5)6,959 (165.7)66.9Public
Anonymous submission
GM_PHD
89. online method using public detections
57.1
36.4
±14.1
33.94.1% 57.3% 23,723330,7674,607 (111.3)11,317 (273.5)38.4Public
V. Eiselein, D. Arp, M. Pätzold, T. Sikora. Real-time Multi-Human Tracking using a Probability Hypothesis Density Filter and multiple detectors. In 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2012.
terry_T
90. online method using public detections
67.1
2.5
±6.9
12.10.4% 83.9% 96,372448,0055,756 (279.4)11,270 (547.1)34.7Public
Anonymous submission
TrackerAvg RankMOTAIDF1MT MLFPFNID Sw.FragHzDetector
CDT
91. using public detections
48.3
-64.5
±16.9
0.10.0% 99.4% 364,642563,67272 (730.7)64 (649.5)46.9Public
Anonymous submission
BIG_HA
92. online method using public detections
47.1
-37.9
±24.1
0.00.0% 100.0% 213,867564,2280 (nan)0 (nan)887.9Public
Anonymous submission

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
21177572355564228

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT17-03-SDP

MOT17-03-SDP

(69.8% MOTA)

MOT17-03-FRCNN

MOT17-03-FRCNN

(56.4% MOTA)

MOT17-06-SDP

MOT17-06-SDP

(49.9% MOTA)

...

...

MOT17-14-DPM

MOT17-14-DPM

(20.4% MOTA)

MOT17-14-FRCNN

MOT17-14-FRCNN

(19.9% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.