MOT17 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
MOT_BJ
1. online method using public detections
81.0
-7.3
±23.5
1.40.0% 99.1% 52,007548,5314,824 (1,734.0)8,621 (3,098.8)0.0Public
Anonymous submission
GM_PHD
2. online method using public detections
65.3
36.4
±14.1
33.94.1% 57.3% 23,723330,7674,607 (111.3)11,317 (273.5)38.4Public
V. Eiselein, D. Arp, M. Pätzold, T. Sikora. Real-time Multi-Human Tracking using a Probability Hypothesis Density Filter and multiple detectors. In 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2012.
CGHA_MOT
3. online method using public detections
63.2
41.2
±14.1
44.08.3% 45.9% 25,462299,1127,294 (155.2)18,655 (397.0)11.4Public
Anonymous submission
GMPHD_KCF
4. online method using public detections
70.8
39.6
±13.6
36.68.8% 43.3% 50,903284,2285,811 (117.1)7,414 (149.4)3.3Public
T. Kutschbach, E. Bochinski, V. Eiselein, T. Sikora. Sequential Sensor Fusion Combining Probability Hypothesis Density and Kernelized Correlation Filters for Multi-Object Tracking in Video Data. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
CASC_MOT
5. online method using public detections
57.1
42.3
±12.8
46.89.1% 44.1% 21,035300,7973,616 (77.4)16,656 (356.7)11.4Public
Anonymous submission
GLMBS3
6. using public detections
68.5
38.0
±13.7
32.39.3% 52.8% 38,874304,0166,963 (151.0)3,927 (85.2)4.9Public
Anonymous submission
XYHv2
7. online method using public detections
75.5
39.9
±12.4
23.89.9% 41.8% 29,713296,70412,900 (272.1)12,911 (272.3)7.8Public
Anonymous submission
c3d_Track
8. online method using public detections
62.8
41.5
±13.7
40.210.7% 48.5% 33,332292,9313,890 (80.9)11,454 (238.2)22.2Public
Anonymous submission
OLGT_new
9. online method using public detections
47.6
45.7
±22.8
49.410.8% 75.5% 6,915298,2881,418 (30.1)3,641 (77.2)6.1Public
Anonymous submission
DS_TW_F
10. online method using public detections
38.3
45.7
±27.0
50.910.8% 75.4% 6,528298,3681,329 (28.2)3,180 (67.5)66.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
GMPHD_SHA
11. online method using public detections
57.8
43.7
±12.5
39.211.7% 43.0% 25,935287,7583,838 (78.3)5,056 (103.2)9.2Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
D_SST_V1
12. online method using public detections
62.3
42.7
±13.9
46.111.8% 44.4% 18,861298,9895,531 (117.7)13,775 (293.0)2.3Public
Anonymous submission
GM_PHD
13. online method using public detections
62.4
42.1
±13.0
33.911.9% 42.7% 18,214297,64610,698 (226.4)10,864 (229.9)9.9Public
Anonymous submission
GMPHD_N1Tr
14. online method using public detections
63.1
42.1
±13.5
33.911.9% 42.7% 18,214297,64610,698 (226.4)10,864 (229.9)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019.
SORT17
15. online method using public detections
63.0
43.1
±13.3
39.812.5% 42.3% 28,398287,5824,852 (99.0)7,127 (145.4)143.3Public
A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft. Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP), 2016.
EAMTT
16. online method using public detections
58.9
42.6
±13.3
41.812.7% 42.7% 30,711288,4744,488 (91.8)5,720 (117.0)12.0Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro. Online Multi-target Tracking with Strong and Weak Detections. In Computer Vision -- ECCV 2016 Workshops, 2016.
GOTURN_3B
17. online method using public detections
57.7
44.3
±13.7
38.513.0% 43.2% 30,302279,1444,861 (96.2)5,277 (104.4)48.6Public
Anonymous submission
TM_track
18. online method using public detections
75.3
41.1
±14.9
32.813.2% 41.3% 27,606287,51117,408 (355.0)15,197 (309.9)2.5Public
Anonymous submission
AM_ADM17
19. online method using public detections
39.4
48.1
±13.8
52.113.4% 39.7% 25,061265,4952,214 (41.8)5,027 (94.9)5.7Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
DAN__test
20. using public detections
65.0
43.0
±14.7
43.313.5% 40.0% 30,367283,5337,576 (152.3)14,990 (301.3)1.8Public
Anonymous submission
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
ms_dh
21. online method using public detections
69.5
42.6
±14.6
40.113.6% 40.0% 31,878284,5287,446 (150.2)14,736 (297.3)4.0Public
Anonymous submission
OTCD_1
22. online method using public detections
52.7
44.9
±13.6
42.314.0% 44.2% 16,280291,1363,573 (73.8)5,444 (112.5)46.5Public
Q. Liu, B. Liu, Y. Wu, W. Li, N. Yu. Real-Time Online Multi-Object Tracking in Compressed Domain. In IEEE Access, 2019.
ZM
23. online method using public detections
65.9
43.5
±13.9
32.614.5% 39.9% 25,083284,4059,197 (185.4)8,849 (178.4)14.4Public
Anonymous submission
DCORV2
24. online method using public detections
49.9
45.5
±13.9
36.114.6% 40.4% 21,161282,9013,592 (72.0)7,696 (154.4)35.5Public
Anonymous submission
GM_PHD_D
25. online method using public detections
59.2
44.0
±13.8
34.214.8% 39.4% 19,135283,53013,556 (272.5)13,821 (277.8)9.9Public
Anonymous submission
HISP_DAL17
26. online method using public detections
57.7
45.4
±13.9
39.914.8% 39.2% 21,820277,4738,727 (171.7)7,147 (140.6)3.2Public
N. Baisa. Robust Online Multi-target Visual Tracking using a HISP Filter with Discriminative Deep Appearance Learning. In CoRR, 2019.
GMPHD_DAL
27. online method using public detections
60.8
44.4
±13.9
36.214.9% 39.4% 19,170283,38011,137 (223.7)13,900 (279.3)3.4Public
N. Baisa. Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning. In 22nd International Conference on Information Fusion, 2019.
YoloSort
28. online method using public detections
55.7
29.5
±24.1
41.715.0% 36.4% 154,747238,2414,888 (84.6)4,952 (85.7)14.4Public
Anonymous submission
GF
29. online method using public detections
54.5
45.0
±13.9
39.115.0% 39.0% 22,387277,33510,397 (204.5)7,421 (145.9)9.9Public
Anonymous submission
HISP_T17
30. online method using public detections
59.6
44.6
±14.2
38.815.1% 38.8% 25,478276,39510,617 (208.1)7,487 (146.8)4.7Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
dcor
31. online method using public detections
53.2
45.0
±14.2
34.015.4% 38.2% 30,231275,2654,801 (93.7)8,498 (165.9)44.4Public
Anonymous submission
PHD_LMP
32. online method using public detections
54.6
45.9
±13.1
42.515.5% 37.9% 27,946272,1964,977 (96.2)6,985 (135.0)29.4Public
Anonymous submission
QiMOT
33. online method using public detections
55.5
47.2
±13.1
40.815.5% 39.9% 18,907274,8284,320 (84.2)5,917 (115.4)1.8Public
Anonymous submission
98K
34. using public detections new
52.2
40.8
±17.2
37.015.6% 38.1% 32,312298,1743,514 (74.5)4,991 (105.8)17.7Public
Anonymous submission
EDA_GNN
35. online method using public detections
49.3
45.5
±13.8
40.515.6% 40.6% 25,685277,6634,091 (80.5)5,579 (109.8)39.3Public
Paper ID 2713
IOU17
36. using public detections
51.5
45.5
±13.6
39.415.7% 40.5% 19,993281,6435,988 (119.6)7,404 (147.8)1,522.9Public
E. Bochinski, V. Eiselein, T. Sikora. High-Speed Tracking-by-Detection Without Using Image Information. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
DSA_MOT17
37. online method using public detections
42.5
45.0
±12.6
43.615.8% 39.2% 21,442286,4822,491 (50.6)3,824 (77.7)9.9Public
Anonymous submission
SAS_MOT17
38. using public detections
47.6
44.2
±12.2
57.216.1% 44.3% 29,473283,6111,529 (30.7)2,644 (53.2)4.8Public
A. Maksai, P. Fua. Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking. In CVPR, 2019.
SNM17
39. online method using public detections
58.7
46.8
±13.8
43.416.2% 37.1% 25,104271,0424,213 (81.1)9,891 (190.3)0.8Public
Anonymous submission
TPbase17
40. online method using public detections
57.4
43.3
±15.0
48.216.2% 36.6% 49,992265,8154,194 (79.3)12,103 (228.8)22.2Public
Anonymous submission
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
FPSN
41. online method using public detections
52.8
44.9
±13.9
48.416.5% 35.8% 33,757269,9527,136 (136.8)14,491 (277.8)10.1Public
S. Lee, E. Kim. Multiple Object Tracking via Feature Pyramid Siamese Networks. In IEEE ACCESS, 2018.
AEb_O
42. online method using public detections
43.9
46.4
±13.9
44.916.5% 41.4% 17,030283,2652,266 (45.5)5,053 (101.5)1.8Public
Anonymous submission
DTBasline
43. online method using public detections
28.6
51.1
±11.7
53.416.7% 35.5% 20,309253,2452,549 (46.2)5,910 (107.2)22.2Public
Anonymous submission
MOT17ZH
44. online method using public detections
36.4
51.1
±13.7
53.416.7% 35.5% 20,309253,2452,549 (46.2)5,910 (107.2)3.7Public
Anonymous submission
SRPN17
45. online method using public detections
37.5
51.0
±11.7
53.516.8% 35.1% 21,011252,8082,596 (47.0)5,981 (108.4)4.1Public
Anonymous submission
MASS
46. online method using public detections
49.5
46.9
±14.1
46.016.9% 36.3% 25,733269,1164,478 (85.6)11,994 (229.3)17.1Public
Anonymous submission
OST
47. using public detections
42.4
49.7
±14.0
50.417.0% 36.7% 21,811258,6493,077 (56.8)4,339 (80.1)1.7Public
Anonymous submission
PHD_GSDL17
48. online method using public detections
46.8
48.0
±13.6
49.617.1% 35.6% 23,199265,9543,998 (75.6)8,886 (168.1)6.7Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
HAM_SADF17
49. online method using public detections
37.6
48.3
±13.2
51.117.1% 41.7% 20,967269,0381,871 (35.8)3,020 (57.7)5.0Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
NOTA
50. using public detections
30.1
51.3
±11.7
54.517.1% 35.4% 20,148252,5312,285 (41.4)5,798 (105.0)17.8Public
SPL-26677-2019
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
MOT_HY
51. using public detections
50.0
47.3
±121.2
49.417.2% 33.8% 46,875246,0614,231 (75.0)8,188 (145.2)2.0Public
Anonymous submission
LT17
52. online method using public detections
49.1
47.7
±16.6
45.217.3% 36.0% 27,856263,0624,042 (75.7)9,183 (172.0)7.2Public
Anonymous submission
2MPT
53. using public detections
35.7
48.1
±14.2
52.917.4% 39.6% 30,650260,1331,860 (34.5)2,784 (51.7)2.7Public
Anonymous submission
LSMT
54. online method using public detections
27.7
51.9
±12.0
53.517.4% 35.0% 18,672250,6622,257 (40.6)5,733 (103.2)8.9Public
Anonymous submission
MOTDT17
55. online method using public detections
32.3
50.9
±11.9
52.717.5% 35.7% 24,069250,7682,474 (44.5)5,317 (95.7)18.3Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
MOTbyReID
56. online method using public detections
63.0
43.6
±13.7
37.117.6% 36.3% 35,725270,03612,347 (236.8)11,408 (218.8)2.5Public
Anonymous submission
DualAtte
57. online method using public detections
46.3
48.4
±14.5
43.717.6% 39.0% 24,915262,6543,423 (64.0)5,192 (97.1)0.3Public
Anonymous submission
TLMHT
58. using public detections
36.7
50.6
±12.5
56.517.6% 43.4% 22,213255,0301,407 (25.7)2,079 (37.9)2.6Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
DeepMOTRPN
59. online method using public detections
44.3
48.1
±14.5
43.017.6% 38.6% 26,490262,5783,696 (69.1)5,353 (100.1)4.9Public
Anonymous submission
Lab031
60. using public detections
48.4
46.9
±16.2
48.117.7% 36.1% 31,634263,9383,795 (71.3)10,498 (197.3)9.4Public
Anonymous submission
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
zxbtk17
61. online method using public detections
53.6
45.1
±14.7
40.017.7% 31.8% 33,186273,5313,303 (64.1)8,148 (158.1)8.3Public
Anonymous submission
LSST17O
62. online method using public detections
33.0
52.7
±13.3
57.917.9% 36.6% 22,512241,9362,167 (37.9)7,443 (130.3)1.8Public
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification
SNet_pub
63. online method using public detections new
37.9
51.7
±12.0
53.418.0% 33.5% 26,809243,0662,735 (48.0)6,157 (108.2)2.5Public
Anonymous submission
AEb
64. using public detections
31.4
47.9
±13.6
47.018.1% 40.7% 15,828276,1792,082 (40.8)4,733 (92.7)66.9Public
Anonymous submission
MHT_bLSTM
65. using public detections
42.7
47.5
±12.6
51.918.2% 41.7% 25,981268,0422,069 (39.4)3,124 (59.5)1.9Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
TppNoFPN
66. using public detections
35.6
52.4
±15.3
52.618.5% 37.2% 18,635247,1042,726 (48.5)5,461 (97.2)4.2Public
Anonymous submission
MHT_ReID7
67. using public detections
52.6
46.5
±13.7
46.918.8% 40.3% 22,203276,3743,386 (66.4)8,521 (167.0)1.6Public
Anonymous submission
DeepMP17
68. using public detections
29.1
50.4
±13.1
52.318.8% 38.7% 22,535255,3561,868 (34.1)3,473 (63.4)7.4Public
MTDF17
69. online method using public detections
50.8
49.6
±13.9
45.218.9% 33.1% 37,124241,7685,567 (97.4)9,260 (162.0)1.2Public
Z. Fu, F. Angelini, J. Chambers, S. Naqvi. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. In IEEE Transactions on Multimedia, 2019.
SiaIOU
70. using public detections
43.3
48.5
±16.7
48.518.9% 38.8% 26,867260,2783,152 (58.5)4,391 (81.5)8.3Public
Anonymous submission
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
PHD_GM
71. online method using public detections
43.4
48.8
±13.4
43.219.1% 35.2% 26,260257,9714,407 (81.2)6,448 (118.8)22.3Public
R. Sanchez-Matilla, A. Cavallaro. A predictor of moving objects for First-Person vision. In Proceedings of IEEE International Conference Image Processing, 2019.
FAMNet
72. online method using public detections
32.8
52.0
±12.0
48.719.1% 33.4% 14,138253,6163,072 (55.8)5,318 (96.6)0.0Public
P. Chu, H. Ling. FAMNet: Joint Learning of Feature, Affinity and Multi-dimensional Assignment for Online Multiple Object Tracking. In ICCV, 2019.
AReid17
73. online method using public detections
26.3
51.4
±12.2
53.919.2% 32.3% 30,079241,3642,993 (52.3)6,373 (111.4)33.7Public
Anonymous submission
DEEP_TAMA
74. online method using public detections
32.8
50.3
±13.3
53.519.2% 37.5% 25,479252,9962,192 (39.7)3,978 (72.1)1.5Public
Y. Yoon, D. Kim, K. Yoon, Y. Song, M. Jeon. Online Multiple Pedestrian Tracking using Deep Temporal Appearance Matching Association. In arXiv:1907.00831, 2019.
DMAN
75. online method using public detections
38.3
48.2
±12.3
55.719.3% 38.3% 26,218263,6082,194 (41.2)5,378 (100.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
SOTD_MC
76. online method using public detections
39.7
48.4
±15.0
45.519.4% 35.9% 33,525255,0912,531 (46.2)4,944 (90.2)67.0Public
Anonymous submission
Tracktor17
77. online method using public detections
31.9
53.5
±14.5
52.319.5% 36.6% 12,201248,0472,072 (37.0)4,611 (82.3)1.5Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
CMT
78. using public detections
24.7
51.8
±12.9
60.719.6% 42.8% 29,528240,9601,217 (21.2)2,008 (35.0)6.5Public
#Submission: TCSVT-02964-2019
TOPA
79. online method using public detections
30.2
51.8
±13.5
53.419.6% 33.1% 27,603241,5462,668 (46.7)5,790 (101.2)443.9Public
Anonymous submission
Q_ls
80. online method using public detections
46.8
50.2
±14.4
43.619.7% 37.3% 23,143253,1514,414 (80.1)6,112 (110.9)1.8Public
Anonymous submission
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
PV
81. online method using public detections
34.8
52.8
±14.1
51.819.7% 34.0% 15,884246,9393,711 (66.0)8,757 (155.7)3.5Public
Anonymous submission
GMPHDOGM17
82. online method using public detections
32.8
49.9
±13.6
47.119.7% 38.0% 24,024255,2773,125 (57.1)3,540 (64.6)30.7Public
Y. Song, K. Yoon, Y. Yoon, K. Yow, M. Jeon. Online Multi-Object Tracking Framework with the GMPHD Filter and Occlusion Group Management. In arXiv:1907.13347, 2019.
JBNOT
83. using public detections
31.2
52.6
±12.3
50.819.7% 35.8% 31,572232,6593,050 (51.9)3,792 (64.5)5.4Public
R. Henschel, Y. Zou, B. Rosenhahn. Multiple People Tracking using Body and Joint Detections. In CVPRW, 2019.
MOT_TBC
84. using public detections
30.0
53.9
±15.7
50.020.2% 36.7% 24,584232,6702,945 (50.1)4,612 (78.5)6.7Public
Anonymous submission
LSST17
85. using public detections
27.8
54.7
±12.9
62.320.4% 40.1% 26,091228,4341,243 (20.9)3,726 (62.6)1.5Public
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification
STCG17
86. using public detections
28.3
51.1
±12.9
54.520.4% 38.6% 32,258241,9161,702 (29.8)2,483 (43.5)66.9Public
Anonymous submission
MFT
87. online method using public detections
43.7
53.1
±16.6
50.120.4% 39.4% 35,295225,6063,681 (61.3)6,271 (104.5)0.7Public
Anonymous submission
AFN17
88. using public detections
28.8
51.5
±13.0
46.920.6% 35.5% 22,391248,4202,593 (46.3)4,308 (77.0)1.8Public
H. Shen, L. Huang, C. Huang, W. Xu. Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. In CoRR, 2018.
MHT_DAM
89. using public detections
35.8
50.7
±13.7
47.220.8% 36.9% 22,875252,8892,314 (41.9)2,865 (51.9)0.9Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
jCC
90. using public detections
29.4
51.2
±14.5
54.520.9% 37.0% 25,937247,8221,802 (32.1)2,984 (53.2)1.8Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
DGCT
91. using public detections
20.5
54.5
±13.1
51.321.0% 35.4% 10,471243,1432,865 (50.3)4,889 (85.9)7.0Public
CJY, HYW, KHW @ HRI-SH
baitrack
92. using public detections
48.3
37.6
±19.4
20.321.0% 30.9% 99,085244,0018,808 (155.2)6,708 (118.2)6.4Public
Anonymous submission
YOONKJ17
93. online method using public detections
34.3
51.4
±13.5
54.021.2% 37.3% 29,051243,2022,118 (37.2)3,072 (54.0)3.4Public
Anonymous submission
FWT
94. using public detections
32.9
51.3
±13.1
47.621.4% 35.2% 24,101247,9212,648 (47.2)4,279 (76.3)0.2Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
EDMT17
95. using public detections
34.7
50.0
±13.9
51.321.6% 36.3% 32,279247,2972,264 (40.3)3,260 (58.0)0.6Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
UTA
96. online method using public detections
30.5
53.0
±11.6
52.221.7% 31.5% 24,468238,3562,292 (39.7)6,231 (107.9)5.0Public
Anonymous submission
TAR_1
97. online method using public detections
39.9
51.6
±11.9
41.421.7% 28.7% 33,514235,8593,629 (62.4)5,949 (102.2)5.6Public
Anonymous submission
TPM
98. using public detections
27.1
54.2
±13.0
52.622.8% 37.5% 13,739242,7301,824 (32.0)2,472 (43.4)0.8Public
Anonymous submission
overlap
99. using public detections
24.1
51.5
±13.1
55.623.0% 36.1% 38,322233,2751,860 (31.7)2,935 (50.0)66.9Public
Anonymous submission
ENFT17
100. using public detections
23.9
52.8
±13.1
57.123.1% 36.8% 26,754237,9091,667 (28.8)2,557 (44.2)0.5Public
BUAA
TrackerAvg RankMOTAIDF1 MTMLFPFNID Sw.FragHzDetector
eTC17
101. using public detections
27.3
51.9
±12.4
58.123.1% 35.5% 36,164232,7832,288 (38.9)3,071 (52.3)0.7Public
G. Wang, Y. Wang, H. Zhang, R. Gu, J. Hwang. Exploit the Connectivity: Multi-Object Tracking with TrackletNet. In arXiv preprint arXiv:1811.07258, 2018.
HDTR
102. using public detections
21.3
54.1
±11.4
48.423.3% 34.8% 18,002238,8181,895 (32.9)2,693 (46.7)1.8Public
eHAF17
103. using public detections
28.1
51.8
±13.2
54.723.4% 37.9% 33,212236,7721,834 (31.6)2,739 (47.2)0.7Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
IDGA
104. using public detections
20.7
52.6
±13.4
61.323.6% 40.2% 29,049236,8301,402 (24.2)2,613 (45.0)59.2Public
Anonymous submission
CRF_TRA
105. using public detections
23.3
53.1
±12.2
53.724.2% 30.7% 27,194234,9912,518 (43.2)4,918 (84.3)1.4Public
Anonymous submission
ISDH_HDAv2
106. online method using public detections
28.3
54.5
±14.5
65.926.4% 32.1% 46,693207,0933,010 (47.6)6,000 (94.8)3.6Public
MM-008988/ IEEE Transactions on Multimedia

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
21177572355564228

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT17-03-SDP

MOT17-03-SDP

(70.7% MOTA)

MOT17-03-FRCNN

MOT17-03-FRCNN

(57.6% MOTA)

MOT17-06-SDP

MOT17-06-SDP

(47.7% MOTA)

...

...

MOT17-14-DPM

MOT17-14-DPM

(17.7% MOTA)

MOT17-14-FRCNN

MOT17-14-FRCNN

(17.1% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.