MOT17 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
hpmmt17
1. online method using public detections
29.3
51.2
±11.8
53.617.3% 34.9% 21,957250,8912,292 (41.3)6,108 (110.0)44,392.5Public
Anonymous submission
STDIC
2. online method using public detections
57.8
44.1
±13.6
45.913.2% 39.6% 46,126266,4492,992 (56.7)5,143 (97.4)17,757.0Public
Anonymous submission
ORCtracker
3. online method using public detections
45.2
50.7
±13.7
43.117.0% 35.2% 20,440249,7918,069 (144.8)11,188 (200.8)3,760.7Public
Anonymous submission
DH_TRK
4. using public detections
30.7
54.1
±13.0
49.221.6% 28.4% 36,196216,6705,918 (96.1)7,760 (126.0)1,775.7Public
Anonymous submission
IOU17
5. using public detections
55.7
45.5
±13.6
39.415.7% 40.5% 19,993281,6435,988 (119.6)7,404 (147.8)1,522.9Public
E. Bochinski, V. Eiselein, T. Sikora. High-Speed Tracking-by-Detection Without Using Image Information. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
TBD17_1
6. online method using public detections
35.9
51.4
±11.7
52.018.5% 33.2% 24,261247,1952,985 (53.1)6,611 (117.7)1,183.8Public
Anonymous submission
BIG_HA
7. online method using public detections
57.1
-37.9
±24.1
0.00.0% 100.0% 213,867564,2280 (nan)0 (nan)887.9Public
Anonymous submission
PA_MOT17
8. online method using public detections
31.3
51.6
±13.5
53.518.9% 33.5% 28,794241,7042,635 (46.1)5,808 (101.6)710.3Public
Anonymous submission
TOPA
9. online method using public detections
32.5
51.8
±13.5
53.419.6% 33.1% 27,603241,5462,668 (46.7)5,790 (101.2)443.9Public
Anonymous submission
L_SORT
10. using public detections
55.3
45.0
±14.0
46.012.2% 41.1% 19,967287,2293,294 (67.1)8,292 (168.9)102.6Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
PeriodMOT
11. online method using public detections
62.2
43.8
±13.2
40.914.7% 42.0% 21,941290,1944,910 (101.1)6,649 (136.9)66.9Public
Anonymous submission
overlap
12. using public detections
25.4
51.5
±13.1
55.623.0% 36.1% 38,322233,2751,860 (31.7)2,935 (50.0)66.9Public
Anonymous submission
AEb
13. using public detections
35.6
47.9
±13.6
47.018.1% 40.7% 15,828276,1792,082 (40.8)4,733 (92.7)66.9Public
Anonymous submission
STCG17
14. using public detections
30.7
51.1
±12.9
54.520.4% 38.6% 32,258241,9161,702 (29.8)2,483 (43.5)66.9Public
Anonymous submission
REQT
15. online method using public detections
61.1
43.9
±14.2
47.413.1% 45.8% 34,309279,0302,986 (59.1)5,402 (106.9)64.1Public
Anonymous submission
IDGA
16. using public detections
33.5
49.9
±12.2
50.322.1% 36.7% 37,060243,1482,426 (42.6)3,846 (67.6)59.2Public
Anonymous submission
GOTURN_3B
17. online method using public detections
60.8
44.3
±13.7
38.513.0% 43.2% 30,302279,1444,861 (96.2)5,277 (104.4)48.6Public
Anonymous submission
CDT
18. using public detections
58.2
-64.5
±16.9
0.10.0% 99.4% 364,642563,67272 (730.7)64 (649.5)46.9Public
Anonymous submission
dcor
19. online method using public detections
57.7
45.0
±14.2
34.015.4% 38.2% 30,231275,2654,801 (93.7)8,498 (165.9)44.4Public
Anonymous submission
EDA_GNN
20. online method using public detections
53.8
45.5
±13.8
40.515.6% 40.6% 25,685277,6634,091 (80.5)5,579 (109.8)39.3Public
Paper ID 2713
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
GM_PHD
21. online method using public detections
67.8
36.4
±14.1
33.94.1% 57.3% 23,723330,7674,607 (111.3)11,317 (273.5)38.4Public
V. Eiselein, D. Arp, M. Pätzold, T. Sikora. Real-time Multi-Human Tracking using a Probability Hypothesis Density Filter and multiple detectors. In 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2012.
DCORV2
22. online method using public detections
54.2
45.5
±13.9
36.114.6% 40.4% 21,161282,9013,592 (72.0)7,696 (154.4)35.5Public
Anonymous submission
terry_T
23. online method using public detections
80.3
2.5
±6.9
12.10.4% 83.9% 96,372448,0055,756 (279.4)11,270 (547.1)34.7Public
Anonymous submission
AReid17
24. online method using public detections
28.1
51.4
±12.2
53.919.2% 32.3% 30,079241,3642,993 (52.3)6,373 (111.4)33.7Public
Anonymous submission
PHD_LMP
25. online method using public detections
59.7
45.9
±13.1
42.515.5% 37.9% 27,946272,1964,977 (96.2)6,985 (135.0)29.4Public
Anonymous submission
PHD_GM
26. online method using public detections
47.1
48.8
±13.4
43.219.1% 35.2% 26,260257,9714,407 (81.2)6,448 (118.8)22.3Public
Anonymous submission
DTBasline
27. online method using public detections
31.9
51.1
±11.7
53.416.7% 35.5% 20,309253,2452,549 (46.2)5,910 (107.2)22.2Public
Anonymous submission
TPbase17
28. online method using public detections
62.6
43.3
±15.0
48.216.2% 36.6% 49,992265,8154,194 (79.3)12,103 (228.8)22.2Public
Anonymous submission
MOTDT17
29. online method using public detections
35.3
50.9
±11.9
52.717.5% 35.7% 24,069250,7682,474 (44.5)5,317 (95.7)18.3Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
BU_CV
30. online method using public detections
61.4
42.8
±14.4
32.315.8% 36.1% 40,573271,83810,118 (195.2)9,426 (181.9)17.8Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
Sn_PBC
31. using public detections
36.2
51.3
±11.7
53.417.4% 35.2% 21,255251,2562,394 (43.2)6,148 (110.8)14.8Public
Anonymous submission
YoloSort
32. online method using public detections
60.2
29.5
±24.1
41.715.0% 36.4% 154,747238,2414,888 (84.6)4,952 (85.7)14.4Public
Anonymous submission
ZM
33. online method using public detections
71.8
43.5
±13.9
32.614.5% 39.9% 25,083284,4059,197 (185.4)8,849 (178.4)14.4Public
Anonymous submission
RTac
34. online method using public detections
48.9
46.3
±14.6
49.218.9% 33.5% 43,447255,1584,196 (76.6)6,056 (110.6)14.1Public
Anonymous submission
MASS
35. online method using public detections new
54.1
46.9
±14.1
46.016.9% 36.3% 25,733269,1164,478 (85.6)11,994 (229.3)12.3Public
Anonymous submission
EAMTT
36. online method using public detections
63.2
42.6
±13.3
41.812.7% 42.7% 30,711288,4744,488 (91.8)5,720 (117.0)12.0Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro. Online Multi-target Tracking with Strong and Weak Detections. In Computer Vision -- ECCV 2016 Workshops, 2016.
YT_T
37. online method using public detections
62.3
45.4
±13.4
40.316.0% 35.7% 25,425275,0507,652 (149.3)8,249 (160.9)11.4Public
Anonymous submission
CMT
38. using public detections
30.4
50.4
±13.0
58.217.8% 44.3% 25,443253,0961,267 (23.0)2,079 (37.7)10.2Public
Anonymous submission
FPSN
39. online method using public detections
57.3
44.9
±13.9
48.416.5% 35.8% 33,757269,9527,136 (136.8)14,491 (277.8)10.1Public
S. Lee, E. Kim. Multiple Object Tracking via Feature Pyramid Siamese Networks. In IEEE ACCESS, 2018.
GM_PHD
40. online method using public detections
66.5
42.1
±13.0
33.911.9% 42.7% 18,214297,64610,698 (226.4)10,864 (229.9)9.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
DSA_MOT17
41. online method using public detections
47.3
45.0
±12.6
43.615.8% 39.2% 21,442286,4822,491 (50.6)3,824 (77.7)9.9Public
Anonymous submission
GM_PHD_D
42. online method using public detections
63.8
44.0
±13.8
34.214.8% 39.4% 19,135283,53013,556 (272.5)13,821 (277.8)9.9Public
Anonymous submission
GMPHD_N1Tr
43. online method using public detections
67.3
42.1
±13.5
33.911.9% 42.7% 18,214297,64610,698 (226.4)10,864 (229.9)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019.
RTRC
44. online method using public detections
48.6
48.5
±14.2
48.618.7% 35.7% 34,180252,8593,490 (63.2)6,304 (114.2)9.8Public
Anonymous submission
reID2track
45. online method using public detections
66.3
44.6
±14.3
39.915.8% 39.7% 22,451284,2136,134 (123.6)13,786 (277.8)9.0Public
Anonymous submission
TEM
46. using public detections
48.3
49.1
±12.6
45.417.0% 38.3% 22,119261,7973,439 (64.2)3,881 (72.4)8.2Public
Anonymous submission
IDOHMPT
47. online method using public detections
57.7
46.0
±13.1
44.116.8% 36.6% 30,873268,2215,768 (109.9)9,663 (184.2)8.1Public
Anonymous submission
XYHv2
48. online method using public detections
80.1
39.9
±12.4
23.89.9% 41.8% 29,713296,70412,900 (272.1)12,911 (272.3)7.8Public
Anonymous submission
MOT_test
49. online method using public detections
33.3
51.6
±11.9
53.917.3% 35.5% 21,419249,0592,384 (42.7)5,613 (100.5)7.8Public
Anonymous submission
DeepMP17
50. using public detections
32.2
50.4
±13.1
52.318.8% 38.7% 22,535255,3561,868 (34.1)3,473 (63.4)7.4Public
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
IOUT_Re
51. online method using public detections
36.5
52.7
±13.0
43.320.1% 32.6% 16,529243,2266,946 (122.1)6,520 (114.6)7.0Public
Anonymous submission
DGCT
52. using public detections
22.8
54.5
±13.1
51.321.0% 35.4% 10,471243,1432,865 (50.3)4,889 (85.9)7.0Public
CJY, HYW, KHW @ HRI-SH
TBNMF17
53. online method using public detections
38.9
50.6
±12.6
49.318.9% 39.2% 17,522258,9902,014 (37.2)4,432 (81.9)6.9Public
Anonymous submission
PHD_GSDL17
54. online method using public detections
49.9
48.0
±13.6
49.617.1% 35.6% 23,199265,9543,998 (75.6)8,886 (168.1)6.7Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
MOT_TBC
55. using public detections
33.3
53.9
±15.7
50.020.2% 36.7% 24,584232,6702,945 (50.1)4,612 (78.5)6.7Public
Anonymous submission
baitrack
56. using public detections
51.8
37.6
±19.4
20.321.0% 30.9% 99,085244,0018,808 (155.2)6,708 (118.2)6.4Public
Anonymous submission
TCF
57. online method using public detections
50.0
48.3
±13.6
48.718.9% 35.1% 36,274252,0923,530 (63.8)6,390 (115.5)6.4Public
Anonymous submission
CEMT
58. using public detections
40.8
49.3
±12.6
44.416.8% 38.5% 21,711261,8082,696 (50.3)3,409 (63.6)5.8Public
Anonymous submission
AM_ADM17
59. online method using public detections
42.9
48.1
±13.8
52.113.4% 39.7% 25,061265,4952,214 (41.8)5,027 (94.9)5.7Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
TAR_1
60. online method using public detections
42.2
51.6
±11.9
41.421.7% 28.7% 33,514235,8593,629 (62.4)5,949 (102.2)5.6Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
HIK_MOT17
61. using public detections
23.2
53.9
±13.7
54.323.7% 32.0% 27,656230,0422,386 (40.3)4,192 (70.8)5.4Public
JBNOT
62. using public detections
34.2
52.6
±12.3
50.819.7% 35.8% 31,572232,6593,050 (51.9)3,792 (64.5)5.4Public
Anonymous submission
COMOT
63. online method using public detections
45.8
46.4
±13.5
48.514.8% 42.2% 20,752279,8162,069 (41.0)4,606 (91.4)5.0Public
Anonymous submission
HAM_SADF17
64. online method using public detections
40.0
48.3
±13.2
51.117.1% 41.7% 20,967269,0381,871 (35.8)3,020 (57.7)5.0Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
SSOMOT
65. online method using public detections
51.8
46.8
±13.1
49.215.3% 39.1% 24,041274,2572,121 (41.3)4,897 (95.3)4.9Public
Anonymous submission
DeepMOTRPN
66. online method using public detections
49.5
48.1
±14.5
43.017.6% 38.6% 26,490262,5783,696 (69.1)5,353 (100.1)4.9Public
Anonymous submission
SAS_MOT17
67. using public detections
50.8
44.2
±12.2
57.216.1% 44.3% 29,473283,6111,529 (30.7)2,644 (53.2)4.8Public
Anonymous submission
SRPN17
68. online method using public detections
40.1
51.0
±11.7
53.516.8% 35.1% 21,011252,8082,596 (47.0)5,981 (108.4)4.1Public
Anonymous submission
ISDH_HDAv2
69. online method using public detections
29.4
54.5
±14.5
65.926.4% 32.1% 46,693207,0933,010 (47.6)6,000 (94.8)3.6Public
MM-008988/ IEEE Transactions on Multimedia
PV
70. online method using public detections
36.2
52.8
±14.1
51.819.7% 34.0% 15,884246,9393,711 (66.0)8,757 (155.7)3.5Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
GMPHD_DAL
71. online method using public detections
64.8
44.4
±13.9
36.214.9% 39.4% 19,170283,38011,137 (223.7)13,900 (279.3)3.5Public
Anonymous submission
GMPHD_KCF
72. online method using public detections
73.8
39.6
±13.6
36.68.8% 43.3% 50,903284,2285,811 (117.1)7,414 (149.4)3.3Public
T. Kutschbach, E. Bochinski, V. Eiselein, T. Sikora. Sequential Sensor Fusion Combining Probability Hypothesis Density and Kernelized Correlation Filters for Multi-Object Tracking in Video Data. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
ReDetPast
73. online method using public detections
68.3
44.3
±14.8
34.917.3% 36.7% 32,113271,34310,962 (211.2)11,733 (226.0)3.3Public
Anonymous submission
TLMHT
74. using public detections
39.7
50.6
±12.5
56.517.6% 43.4% 22,213255,0301,407 (25.7)2,079 (37.9)2.6Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
LM_NN
75. using public detections
51.8
45.1
±13.3
43.214.8% 46.2% 10,834296,4512,286 (48.2)2,463 (51.9)2.5Public
NEUCOM-D-18-03230
TM_track
76. online method using public detections
80.2
41.1
±14.9
32.813.2% 41.3% 27,606287,51117,408 (355.0)15,197 (309.9)2.5Public
Anonymous submission
MOTbyReID
77. online method using public detections new
66.7
43.6
±13.7
37.117.6% 36.3% 35,725270,03612,347 (236.8)11,408 (218.8)2.5Public
Anonymous submission
D_SST_V1
78. online method using public detections
66.2
42.7
±13.9
46.111.8% 44.4% 18,861298,9895,531 (117.7)13,775 (293.0)2.3Public
Anonymous submission
yt_face
79. online method using public detections
31.9
52.6
±13.1
51.523.0% 35.9% 23,894241,4892,047 (35.8)2,827 (49.4)2.2Public
Anonymous submission
MOT_HY
80. using public detections new
47.1
42.9
±150.7
49.923.8% 23.3% 99,045218,6704,431 (72.3)9,108 (148.7)2.0Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
MHT_bLSTM
81. using public detections
45.1
47.5
±12.6
51.918.2% 41.7% 25,981268,0422,069 (39.4)3,124 (59.5)1.9Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
Q_ls
82. online method using public detections
50.6
50.2
±14.4
43.619.7% 37.3% 23,143253,1514,414 (80.1)6,112 (110.9)1.8Public
Anonymous submission
QiMOT
83. online method using public detections
59.2
47.2
±13.1
40.815.5% 39.9% 18,907274,8284,320 (84.2)5,917 (115.4)1.8Public
Anonymous submission
Qclc
84. online method using public detections
35.3
54.0
±14.3
47.723.3% 30.7% 22,374232,2124,748 (80.7)6,022 (102.3)1.8Public
Anonymous submission
LSST17O
85. online method using public detections
35.9
52.7
±13.3
57.917.9% 36.6% 22,512241,9362,167 (37.9)7,443 (130.3)1.8Public
Anonymous submission
jCC
86. using public detections
31.7
51.2
±14.5
54.520.9% 37.0% 25,937247,8221,802 (32.1)2,984 (53.2)1.8Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
AFN17
87. using public detections
32.0
51.5
±13.0
46.920.6% 35.5% 22,391248,4202,593 (46.3)4,308 (77.0)1.8Public
H. Shen, L. Huang, C. Huang, W. Xu. Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. In CoRR, 2018.
HDTR
88. using public detections
22.3
54.1
±11.4
48.423.3% 34.8% 18,002238,8181,895 (32.9)2,693 (46.7)1.8Public
AEb_O
89. online method using public detections
47.5
46.4
±13.9
44.916.5% 41.4% 17,030283,2652,266 (45.5)5,053 (101.5)1.8Public
Anonymous submission
OST
90. using public detections
45.1
49.2
±14.3
47.618.6% 35.3% 21,844260,8714,022 (74.8)4,821 (89.7)1.7Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
zxbtk17
91. online method using public detections new
72.5
44.3
±15.0
29.618.5% 36.8% 33,024272,6498,422 (163.0)12,041 (233.0)1.7Public
Anonymous submission
DEEP_TAMA
92. online method using public detections
35.8
50.3
±13.3
53.519.2% 37.5% 25,479252,9962,192 (39.7)3,978 (72.1)1.5Public
for journal submission
Tracktor17
93. online method using public detections
34.4
53.5
±14.5
52.319.5% 36.6% 12,201248,0472,072 (37.0)4,611 (82.3)1.5Public
Anonymous submission
LSST17
94. using public detections
29.6
54.7
±12.9
62.320.4% 40.1% 26,091228,4341,243 (20.9)3,726 (62.6)1.5Public
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification
CRF_TRA
95. using public detections
25.5
53.1
±12.1
53.724.2% 30.7% 27,194234,9912,518 (43.2)4,918 (84.3)1.4Public
Anonymous submission
MTDF17
96. online method using public detections
52.8
49.6
±13.9
45.218.9% 33.1% 37,124241,7685,567 (97.4)9,260 (162.0)1.2Public
Z. Fu, F. Angelini, J. Chambers, S. Naqvi. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. In IEEE Transactions on Multimedia, 2019.
ts_WCFMT
97. online method using public detections
49.3
48.4
±13.6
51.421.0% 32.5% 32,037255,4723,410 (62.3)6,351 (116.1)1.0Public
Anonymous submission
WCFMT17
98. using public detections
48.5
47.3
±16.0
52.321.9% 30.7% 43,253250,3023,556 (63.9)6,071 (109.1)1.0Public
Anonymous submission
MHT_DAM
99. using public detections
39.1
50.7
±13.7
47.220.8% 36.9% 22,875252,8892,314 (41.9)2,865 (51.9)0.9Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
HCC
100. using public detections
44.7
44.8
±11.2
46.818.3% 38.9% 17,586292,2941,555 (32.3)2,221 (46.1)0.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
TPM
101. using public detections
29.2
54.2
±13.0
52.622.8% 37.5% 13,739242,7301,824 (32.0)2,472 (43.4)0.8Public
Anonymous submission
SNM17
102. online method using public detections
63.6
46.8
±13.8
43.416.2% 37.1% 25,104271,0424,213 (81.1)9,891 (190.3)0.8Public
Anonymous submission
eHAF17
103. using public detections
29.6
51.8
±13.2
54.723.4% 37.9% 33,212236,7721,834 (31.6)2,739 (47.2)0.7Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
eTC17
104. using public detections
29.0
51.9
±12.4
58.123.1% 35.5% 36,164232,7832,288 (38.9)3,071 (52.3)0.7Public
G. Wang, Y. Wang, H. Zhang, R. Gu, J. Hwang. Exploit the Connectivity: Multi-Object Tracking with TrackletNet. In arXiv preprint arXiv:1811.07258, 2018.
SemiOMOT
105. using public detections
32.3
52.4
±15.0
51.022.6% 34.6% 23,660242,9532,070 (36.4)3,170 (55.7)0.7Public
Anonymous submission
EDMT17
106. using public detections
36.9
50.0
±13.9
51.321.6% 36.3% 32,279247,2972,264 (40.3)3,260 (58.0)0.6Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
NV_MC
107. using public detections
44.3
49.1
±13.9
45.719.0% 38.0% 16,850267,9232,446 (46.6)3,196 (60.9)0.3Public
Anonymous submission
NOTBD
108. using public detections
35.5
53.9
±12.7
51.221.5% 35.6% 28,912228,3562,964 (49.8)3,600 (60.5)0.3Public
Anonymous submission
DMAN
109. online method using public detections
41.8
48.2
±12.3
55.719.3% 38.3% 26,218263,6082,194 (41.2)5,378 (100.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
FWT
110. using public detections
36.3
51.3
±13.1
47.621.4% 35.2% 24,101247,9212,648 (47.2)4,279 (76.3)0.2Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.Frag HzDetector
Tensor17
111. online method using public detections
41.1
52.0
±12.0
48.719.1% 33.4% 14,138253,6163,072 (55.8)5,318 (96.6)0.0Public
P. Chu, H. Ling. FAMNet: Joint Learning of Feature, Affinity and Multi-dimensional Assignment for Online Multiple Object Tracking. In arXiv:1904.04989, 2019.
MOT_BJ
112. online method using public detections
83.4
-7.3
±23.5
1.40.0% 99.1% 52,007548,5314,824 (1,734.0)8,621 (3,098.8)0.0Public
Anonymous submission

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
21177572355564228

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT17-03-SDP

MOT17-03-SDP

(69.2% MOTA)

MOT17-03-FRCNN

MOT17-03-FRCNN

(55.9% MOTA)

MOT17-06-SDP

MOT17-06-SDP

(47.8% MOTA)

...

...

MOT17-14-DPM

MOT17-14-DPM

(18.0% MOTA)

MOT17-14-FRCNN

MOT17-14-FRCNN

(17.4% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.