MOT17 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!


Benchmark Statistics

TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
2MPT
1. using public detections
48.1
±14.2
52.917.4% 39.6% 30,650260,1331,860 (34.5)2,784 (51.7)2.7Public
Anonymous submission
98K
2. using public detections
40.8
±17.2
37.015.6% 38.1% 32,312298,1743,514 (74.5)4,991 (105.8)17.7Public
Anonymous submission
AEb
3. using public detections
48.1
±13.6
46.017.7% 39.5% 16,839273,8192,350 (45.7)5,275 (102.5)66.9Public
AEb_O
4. online method using public detections
46.4
±13.9
44.916.5% 41.4% 17,030283,2652,266 (45.5)5,053 (101.5)1.8Public
Anonymous submission
AFN17
5. using public detections
51.5
±13.0
46.920.6% 35.5% 22,391248,4202,593 (46.3)4,308 (77.0)1.8Public
H. Shen, L. Huang, C. Huang, W. Xu. Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. In CoRR, 2018.
Alex
6. online method using public detections
47.6
±14.2
49.813.2% 41.4% 16,028277,1102,731 (53.7)8,481 (166.7)0.2Public
Anonymous submission
Alex1
7. online method using public detections
56.1
±14.9
55.022.1% 34.9% 12,627232,9562,097 (35.7)3,398 (57.9)22.8Public
Anonymous submission
AM_ADM17
8. online method using public detections
48.1
±13.8
52.113.4% 39.7% 25,061265,4952,214 (41.8)5,027 (94.9)5.7Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
AReid17
9. online method using public detections
51.4
±12.2
53.919.2% 32.3% 30,079241,3642,993 (52.3)6,373 (111.4)33.7Public
Anonymous submission
baitrack
10. using public detections
37.6
±19.4
20.321.0% 30.9% 99,085244,0018,808 (155.2)6,708 (118.2)6.4Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
c3d_Track
11. online method using public detections
41.5
±13.7
40.210.7% 48.5% 33,332292,9313,890 (80.9)11,454 (238.2)22.2Public
Anonymous submission
cascademot
12. online method using public detections
41.8
±16.0
34.215.2% 38.7% 27,816288,76811,535 (236.3)14,800 (303.2)17.8Public
Anonymous submission
CASC_MOT
13. online method using public detections
42.3
±12.8
46.89.1% 44.1% 21,035300,7973,616 (77.4)16,656 (356.7)11.4Public
Anonymous submission
CGHA_MOT
14. online method using public detections
41.2
±14.1
44.08.3% 45.9% 25,462299,1127,294 (155.2)18,655 (397.0)11.4Public
Anonymous submission
CMT
15. using public detections
51.8
±12.9
60.719.6% 42.8% 29,528240,9601,217 (21.2)2,008 (35.0)6.5Public
#Submission: TIP-21190-2019
cnt_klt
16. using public detections
48.0
±11.8
57.819.0% 31.6% 63,207228,7831,215 (20.4)4,134 (69.5)59.2Public
Anonymous submission
CoCT
17. online method using public detections
50.1
±12.2
55.623.9% 35.4% 49,887229,3912,075 (35.0)4,304 (72.5)57.8Public
Anonymous submission
CRF_TRA
18. using public detections
53.1
±12.2
53.724.2% 30.7% 27,194234,9912,518 (43.2)4,918 (84.3)1.4Public
Anonymous submission
CTRACKER
19. online method using public detections
39.4
±13.5
26.113.4% 42.5% 16,249307,90017,592 (387.2)14,508 (319.3)66.9Public
Anonymous submission
DAIST_
20. online method using public detections
52.1
±12.5
53.819.7% 33.6% 29,931237,9132,689 (46.5)5,600 (96.8)6.9Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
DAM_MOT
21. online method using public detections
47.0
±12.6
48.716.9% 38.1% 28,933267,8962,140 (40.7)2,756 (52.5)18.7Public
Multi Object Tracking using Deep Structural Cost Minimization in Data Association
DAN__test
22. using public detections
43.0
±14.7
43.313.5% 40.0% 30,367283,5337,576 (152.3)14,990 (301.3)1.8Public
Anonymous submission
DCORV2
23. online method using public detections
45.5
±13.9
36.114.6% 40.4% 21,161282,9013,592 (72.0)7,696 (154.4)35.5Public
Anonymous submission
dcor
24. online method using public detections
45.0
±14.2
34.015.4% 38.2% 30,231275,2654,801 (93.7)8,498 (165.9)44.4Public
Anonymous submission
DeepMOTRPN
25. online method using public detections
48.1
±14.5
43.017.6% 38.6% 26,490262,5783,696 (69.1)5,353 (100.1)4.9Public
Anonymous submission
DeepMP17
26. using public detections
50.4
±13.1
52.318.8% 38.7% 22,535255,3561,868 (34.1)3,473 (63.4)7.4Public
DEEP_TAMA
27. online method using public detections
50.3
±13.3
53.519.2% 37.5% 25,479252,9962,192 (39.7)3,978 (72.1)1.5Public
Y. Yoon, D. Kim, K. Yoon, Y. Song, M. Jeon. Online Multiple Pedestrian Tracking using Deep Temporal Appearance Matching Association. In arXiv:1907.00831, 2019.
DGCT
28. using public detections
54.5
±13.1
51.321.0% 35.4% 10,471243,1432,865 (50.3)4,889 (85.9)7.0Public
CJY, HYW, KHW @ HRI-SH
DMAN
29. online method using public detections
48.2
±12.3
55.719.3% 38.3% 26,218263,6082,194 (41.2)5,378 (100.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
DSA_MOT17
30. online method using public detections
45.0
±12.6
43.615.8% 39.2% 21,442286,4822,491 (50.6)3,824 (77.7)9.9Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
DS_MOT
31. online method using public detections
56.1
±15.8
52.721.1% 35.4% 8,866235,4493,609 (61.9)3,777 (64.8)10.0Public
Anonymous submission
DS_TW_F
32. online method using public detections
45.7
±27.0
50.910.8% 75.4% 6,528298,3681,329 (28.2)3,180 (67.5)66.9Public
Anonymous submission
DTBasline
33. online method using public detections
51.1
±11.7
53.416.7% 35.5% 20,309253,2452,549 (46.2)5,910 (107.2)22.2Public
Anonymous submission
DualAtte
34. online method using public detections
48.4
±14.5
43.717.6% 39.0% 24,915262,6543,423 (64.0)5,192 (97.1)0.3Public
Anonymous submission
D_SST_V1
35. online method using public detections
42.7
±13.9
46.111.8% 44.4% 18,861298,9895,531 (117.7)13,775 (293.0)2.3Public
Anonymous submission
E2EM
36. online method using public detections
47.5
±14.5
48.816.5% 37.5% 20,655272,1873,632 (70.2)12,712 (245.6)29.6Public
Anonymous submission
EAMTT
37. online method using public detections
42.6
±13.3
41.812.7% 42.7% 30,711288,4744,488 (91.8)5,720 (117.0)12.0Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro. Online Multi-target Tracking with Strong and Weak Detections. In Computer Vision -- ECCV 2016 Workshops, 2016.
EDA_GNN
38. online method using public detections
45.5
±13.8
40.515.6% 40.6% 25,685277,6634,091 (80.5)5,579 (109.8)39.3Public
Paper ID 2713
EDMT17
39. using public detections
50.0
±13.9
51.321.6% 36.3% 32,279247,2972,264 (40.3)3,260 (58.0)0.6Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
eHAF17
40. using public detections
51.8
±13.2
54.723.4% 37.9% 33,212236,7721,834 (31.6)2,739 (47.2)0.7Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
ENFT17
41. using public detections
52.8
±13.1
57.123.1% 36.8% 26,754237,9091,667 (28.8)2,557 (44.2)0.5Public
BUAA
eTC17
42. using public detections
51.9
±12.4
58.123.1% 35.5% 36,164232,7832,288 (38.9)3,071 (52.3)0.7Public
G. Wang, Y. Wang, H. Zhang, R. Gu, J. Hwang. Exploit the connectivity: Multi-object tracking with trackletnet. In Proceedings of the 27th ACM International Conference on Multimedia, 2019.
FAMNet
43. online method using public detections
52.0
±12.0
48.719.1% 33.4% 14,138253,6163,072 (55.8)5,318 (96.6)0.0Public
P. Chu, H. Ling. FAMNet: Joint Learning of Feature, Affinity and Multi-dimensional Assignment for Online Multiple Object Tracking. In ICCV, 2019.
FFT
44. online method using public detections
56.5
±15.7
51.026.2% 26.7% 23,746215,9715,672 (91.9)5,474 (88.7)1.8Public
Anonymous submission
FPSN
45. online method using public detections
44.9
±13.9
48.416.5% 35.8% 33,757269,9527,136 (136.8)14,491 (277.8)10.1Public
S. Lee, E. Kim. Multiple Object Tracking via Feature Pyramid Siamese Networks. In IEEE ACCESS, 2018.
FWT
46. using public detections
51.3
±13.1
47.621.4% 35.2% 24,101247,9212,648 (47.2)4,279 (76.3)0.2Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
GF
47. online method using public detections
45.0
±13.9
39.115.0% 39.0% 22,387277,33510,397 (204.5)7,421 (145.9)9.9Public
Anonymous submission
GLMBS3
48. using public detections
38.0
±13.7
32.39.3% 52.8% 38,874304,0166,963 (151.0)3,927 (85.2)4.9Public
Anonymous submission
GMOT
49. using public detections
55.4
±12.2
57.922.7% 34.7% 20,608229,5111,403 (23.7)2,765 (46.6)5.9Public
LXD, KHW @ HRI-SH
GMPHDOGM17
50. online method using public detections
49.9
±13.6
47.119.7% 38.0% 24,024255,2773,125 (57.1)3,540 (64.6)30.7Public
Y. Song, K. Yoon, Y. Yoon, K. Yow, M. Jeon. Online Multi-Object Tracking with GMPHD Filter and Occlusion Group Management. In IEEE Access, 2019.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
GMPHD_DAL
51. online method using public detections
44.4
±13.9
36.214.9% 39.4% 19,170283,38011,137 (223.7)13,900 (279.3)3.4Public
N. Baisa. Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning. In 2019 22th International Conference on Information Fusion (FUSION), 2019.
GMPHD_KCF
52. online method using public detections
39.6
±13.5
36.68.8% 43.3% 50,903284,2285,811 (117.1)7,414 (149.4)3.3Public
T. Kutschbach, E. Bochinski, V. Eiselein, T. Sikora. Sequential Sensor Fusion Combining Probability Hypothesis Density and Kernelized Correlation Filters for Multi-Object Tracking in Video Data. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
GMPHD_N1Tr
53. online method using public detections
42.1
±13.2
33.911.9% 42.7% 18,214297,64610,698 (226.4)10,864 (229.9)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019.
GMPHD_Rd17
54. online method using public detections
46.8
±14.7
54.119.7% 33.3% 38,452257,6783,865 (71.1)8,097 (149.0)30.8Public
N. Baisa. Occlusion-robust Online Multi-object Visual Tracking using a GM-PHD Filter with a CNN-based Re-identification. In , 2019.
GMPHD_SHA
55. online method using public detections
43.7
±12.5
39.211.7% 43.0% 25,935287,7583,838 (78.3)5,056 (103.2)9.2Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
GM_PHD
56. online method using public detections
36.4
±14.1
33.94.1% 57.3% 23,723330,7674,607 (111.3)11,317 (273.5)38.4Public
V. Eiselein, D. Arp, M. Pätzold, T. Sikora. Real-time Multi-Human Tracking using a Probability Hypothesis Density Filter and multiple detectors. In 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2012.
GM_PHD
57. online method using public detections
42.1
±13.2
33.911.9% 42.7% 18,214297,64610,698 (226.4)10,864 (229.9)9.9Public
Anonymous submission
GM_PHD_D
58. online method using public detections
44.0
±13.8
34.214.8% 39.4% 19,135283,53013,556 (272.5)13,821 (277.8)9.9Public
Anonymous submission
GNNMOT
59. online method using public detections
42.0
±12.8
29.312.0% 50.0% 23,294299,6944,377 (93.4)3,847 (82.1)177.6Public
Anonymous submission
GNNT
60. online method using public detections
-523.7
±1,341.9
9.033.6% 27.2% 3,318,414185,81915,019 (223.9)4,763 (71.0)7.6Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
GNN_tracktor
61. online method using public detections
54.4
±12.9
54.117.8% 37.4% 12,655241,8682,660 (46.6)3,991 (69.9)1.7Public
Anonymous submission
GoturnM17
62. online method using public detections
38.3
±9.0
25.79.4% 47.1% 55,381282,67010,328 (207.0)9,849 (197.4)11.8Public
Anonymous submission
GOTURN_3B
63. online method using public detections
44.3
±13.7
38.513.0% 43.2% 30,302279,1444,861 (96.2)5,277 (104.4)48.6Public
Anonymous submission
HAM_SADF17
64. online method using public detections
48.3
±13.2
51.117.1% 41.7% 20,967269,0381,871 (35.8)3,020 (57.7)5.0Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
HDTR
65. using public detections
54.1
±11.4
48.423.3% 34.8% 18,002238,8181,895 (32.9)2,693 (46.7)1.8Public
M. Babaee, A. Athar, G. Rigoll. Multiple People Tracking Using Hierarchical Deep Tracklet Re-identification. In arXiv preprint arXiv:1811.04091, 2018.
HISP_DAL17
66. online method using public detections
45.4
±13.9
39.914.8% 39.2% 21,820277,4738,727 (171.7)7,147 (140.6)3.2Public
N. Baisa. Robust Online Multi-target Visual Tracking using a HISP Filter with Discriminative Deep Appearance Learning. In CoRR, 2019.
HISP_T17
67. online method using public detections
44.6
±14.2
38.815.1% 38.8% 25,478276,39510,617 (208.1)7,487 (146.8)4.7Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
HTBT
68. using public detections
52.3
±13.3
54.522.5% 36.4% 28,743238,2681,959 (33.9)2,973 (51.5)0.4Public
Anonymous submission
IDGA
69. using public detections
52.6
±13.4
61.323.6% 40.2% 29,049236,8301,402 (24.2)2,613 (45.0)59.2Public
Anonymous submission
IOU17
70. using public detections
45.5
±13.6
39.415.7% 40.5% 19,993281,6435,988 (119.6)7,404 (147.8)1,522.9Public
E. Bochinski, V. Eiselein, T. Sikora. High-Speed Tracking-by-Detection Without Using Image Information. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
ISDH_HDAv2
71. online method using public detections
54.5
±14.5
65.926.4% 32.1% 46,693207,0933,010 (47.6)6,000 (94.8)3.6Public
MM-008988/ IEEE Transactions on Multimedia
ISE_MOT
72. online method using public detections
58.6
±10.5
54.727.0% 29.8% 23,033208,0452,368 (37.5)3,247 (51.4)16.3Public
Anonymous submission
ISE_MOT17R
73. online method using public detections
60.1
±11.0
56.428.5% 28.1% 23,168199,4832,556 (39.5)3,182 (49.2)7.2Public
MIFT
JBNOT
74. using public detections
52.6
±12.3
50.819.7% 35.8% 31,572232,6593,050 (51.9)3,792 (64.5)5.4Public
R. Henschel, Y. Zou, B. Rosenhahn. Multiple People Tracking using Body and Joint Detections. In CVPRW, 2019.
jCC
75. using public detections
51.2
±14.5
54.520.9% 37.0% 25,937247,8221,802 (32.1)2,984 (53.2)1.8Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
JDT
76. online method using public detections
47.4
±12.2
50.116.8% 37.2% 26,910267,3312,760 (52.5)6,211 (118.0)35.1Public
Anonymous submission
JOINT_TRAC
77. using public detections
29.4
±17.6
34.512.6% 42.3% 132,192260,8085,397 (100.4)10,704 (199.0)66.9Public
Anonymous submission
KVIOU
78. online method using public detections
46.6
±14.2
44.017.3% 38.1% 34,838262,0084,379 (81.8)7,844 (146.4)29.6Public
Anonymous submission
Lab031
79. using public detections
46.9
±16.2
48.117.7% 36.1% 31,634263,9383,795 (71.3)10,498 (197.3)9.4Public
Anonymous submission
lbc_mot
80. using public detections
49.8
±14.3
52.320.3% 36.2% 20,963259,5382,638 (48.9)5,303 (98.2)66.9Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
Lif_T
81. using public detections
60.5
±15.2
65.627.0% 33.6% 14,966206,6191,189 (18.8)3,476 (54.8)0.5Public
Anonymous submission
LM_NN
82. using public detections
45.1
±13.3
43.214.8% 46.2% 10,834296,4512,286 (48.2)2,463 (51.9)0.9Public
M. Babaee, Z. Li, G. Rigoll. A Dual CNN--RNN for Multiple People Tracking. In Neurocomputing, 2019.
LSMT
83. online method using public detections
51.9
±12.0
53.517.4% 35.0% 18,672250,6622,257 (40.6)5,733 (103.2)8.9Public
Anonymous submission
LSST17
84. using public detections
54.7
±12.9
62.320.4% 40.1% 26,091228,4341,243 (20.9)3,726 (62.6)1.5Public
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification
LSST17O
85. online method using public detections
52.7
±13.3
57.917.9% 36.6% 22,512241,9362,167 (37.9)7,443 (130.3)1.8Public
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification
LT17
86. online method using public detections
47.7
±16.6
45.217.3% 36.0% 27,856263,0624,042 (75.7)9,183 (172.0)7.2Public
Anonymous submission
MASS
87. online method using public detections
46.9
±14.1
46.016.9% 36.3% 25,733269,1164,478 (85.6)11,994 (229.3)17.1Public
H. Karunasekera, H. Wang, H. Zhang. Multiple Object Tracking With Attention to Appearance, Structure, Motion and Size. In IEEE Access, 2019.
MCLT17
88. using public detections
54.2
±12.3
63.524.0% 38.1% 23,602233,7831,208 (20.6)2,394 (40.9)66.9Public
Anonymous submission
MFT
89. online method using public detections
53.1
±16.1
50.120.4% 39.4% 35,295225,6063,681 (61.3)6,271 (104.5)0.7Public
Anonymous submission
MHT_bLSTM
90. using public detections
47.5
±12.6
51.918.2% 41.7% 25,981268,0422,069 (39.4)3,124 (59.5)1.9Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MHT_DAM
91. using public detections
50.7
±13.7
47.220.8% 36.9% 22,875252,8892,314 (41.9)2,865 (51.9)0.9Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
MHT_ReID7
92. using public detections
46.5
±13.7
46.918.8% 40.3% 22,203276,3743,386 (66.4)8,521 (167.0)1.6Public
Anonymous submission
MMHT17
93. online method using public detections
52.8
±12.9
53.320.3% 37.5% 25,401238,4132,596 (45.0)4,103 (71.1)37.2Public
Anonymous submission
MOCL
94. online method using public detections new
49.5
±14.0
43.420.7% 35.6% 25,373254,1315,164 (94.0)5,787 (105.3)148.0Public
ECCV-20/4696
MOLF
95. online method using public detections
50.9
±12.3
46.718.3% 34.6% 29,398242,8374,535 (79.6)5,343 (93.8)30.5Public
Anonymous submission
MOT17ZH
96. online method using public detections
51.1
±13.7
53.416.7% 35.5% 20,309253,2452,549 (46.2)5,910 (107.2)3.7Public
Anonymous submission
MOTbyReID
97. online method using public detections
43.6
±13.7
37.117.6% 36.3% 35,725270,03612,347 (236.8)11,408 (218.8)2.5Public
Anonymous submission
MOTDT17
98. online method using public detections
50.9
±11.9
52.717.5% 35.7% 24,069250,7682,474 (44.5)5,317 (95.7)18.3Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
MOTF17
99. using public detections
52.0
±13.2
50.520.1% 40.4% 19,222249,4642,293 (41.1)3,297 (59.1)2.2Public
Anonymous submission
MOTPP17
100. using public detections
52.4
±15.4
50.822.4% 40.0% 19,922246,1832,223 (39.4)2,769 (49.1)35.5Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MOT_AF
101. online method using public detections
53.5
±13.4
55.619.2% 37.6% 12,867247,8161,672 (29.8)3,516 (62.7)25.2Public
Anonymous submission
MOT_BJ
102. online method using public detections
-7.3
±23.5
1.40.0% 99.1% 52,007548,5314,824 (1,734.0)8,621 (3,098.8)0.0Public
Anonymous submission
MOT_HY
103. using public detections
47.3
±121.2
49.417.2% 33.8% 46,875246,0614,231 (75.0)8,188 (145.2)2.0Public
Anonymous submission
MOT_TBC
104. using public detections
53.9
±15.7
50.020.2% 36.7% 24,584232,6702,945 (50.1)4,612 (78.5)6.7Public
Anonymous submission
MPNTrack17
105. using public detections
55.7
±13.2
59.127.2% 34.4% 25,013223,5311,433 (23.7)3,122 (51.7)4.2Public
Anonymous submission
ms_dh
106. online method using public detections
42.6
±14.6
40.113.6% 40.0% 31,878284,5287,446 (150.2)14,736 (297.3)4.0Public
Anonymous submission
MTDF17
107. online method using public detections
49.6
±13.9
45.218.9% 33.1% 37,124241,7685,567 (97.4)9,260 (162.0)1.2Public
Z. Fu, F. Angelini, J. Chambers, S. Naqvi. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. In IEEE Transactions on Multimedia, 2019.
NOTA
108. using public detections
51.3
±11.7
54.517.1% 35.4% 20,148252,5312,285 (41.4)5,798 (105.0)17.8Public
L. Chen, H. Ai, R. Chen, Z. Zhuang. Aggregate Tracklet Appearance Features for Multi-Object Tracking. In IEEE Signal Processing Letters, 2019.
OLGT_new
109. online method using public detections
45.7
±22.8
49.410.8% 75.5% 6,915298,2881,418 (30.1)3,641 (77.2)6.1Public
Anonymous submission
OMHT
110. online method using public detections
52.6
±12.9
51.919.3% 38.0% 20,153244,9982,552 (45.1)4,148 (73.3)37.2Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
OST
111. using public detections
49.7
±14.0
50.417.0% 36.7% 21,811258,6493,077 (56.8)4,339 (80.1)1.7Public
Anonymous submission
OTCD_1
112. online method using public detections
48.6
±13.7
47.916.2% 41.2% 18,499268,2043,502 (66.7)5,588 (106.5)15.5Public
Q. Liu, B. Liu, Y. Wu, W. Li, N. Yu. Real-Time Online Multi-Object Tracking in Compressed Domain. In IEEE Access, 2019.
overlap
113. using public detections
51.5
±13.1
55.623.0% 36.1% 38,322233,2751,860 (31.7)2,935 (50.0)66.9Public
Anonymous submission
PHD_GM
114. online method using public detections
48.8
±13.4
43.219.1% 35.2% 26,260257,9714,407 (81.2)6,448 (118.8)22.3Public
R. Sanchez-Matilla, A. Cavallaro. A predictor of moving objects for First-Person vision. In Proceedings of IEEE International Conference Image Processing, 2019.
PHD_GSDL17
115. online method using public detections
48.0
±13.6
49.617.1% 35.6% 23,199265,9543,998 (75.6)8,886 (168.1)6.7Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
PHD_LMP
116. online method using public detections
45.9
±13.1
42.515.5% 37.9% 27,946272,1964,977 (96.2)6,985 (135.0)29.4Public
Anonymous submission
PointMOT17
117. using public detections
52.2
±13.3
50.822.4% 40.0% 22,012245,2772,134 (37.8)2,652 (46.9)2.2Public
Anonymous submission
PP17
118. using public detections
51.5
±13.0
47.821.8% 40.1% 19,821251,4952,492 (45.0)2,986 (53.9)1.9Public
Anonymous submission
PPMOT17
119. using public detections
51.5
±13.0
47.821.8% 40.1% 19,821251,4952,492 (45.0)2,986 (53.9)35.5Public
Anonymous submission
PPMOT
120. using public detections
52.4
±13.4
50.822.4% 40.0% 20,176246,1582,224 (39.5)2,769 (49.1)2.3Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
PV
121. online method using public detections
52.8
±14.1
51.819.7% 34.0% 15,884246,9393,711 (66.0)8,757 (155.7)3.5Public
Anonymous submission
QiMOT
122. online method using public detections
47.2
±13.1
40.815.5% 39.9% 18,907274,8284,320 (84.2)5,917 (115.4)1.8Public
Anonymous submission
Q_ls
123. online method using public detections
50.2
±14.4
43.619.7% 37.3% 23,143253,1514,414 (80.1)6,112 (110.9)1.8Public
Anonymous submission
RegTL
124. using public detections
48.1
±13.7
41.618.1% 39.8% 20,850268,3633,386 (64.6)4,524 (86.3)17.8Public
Anonymous submission
ReID_Seq
125. online method using public detections
51.4
±12.7
49.220.3% 34.1% 23,045247,8853,226 (57.5)4,148 (74.0)14.0Public
Anonymous submission
Response17
126. using public detections
61.2
±14.3
63.236.7% 22.0% 55,168159,9863,589 (50.1)7,640 (106.6)5.9Public
Anonymous submission
ResTestV2
127. using public detections
52.0
±16.4
50.919.2% 36.3% 33,320234,4812,836 (48.5)4,835 (82.7)66.9Public
Anonymous submission
ReTracktor
128. using public detections
55.1
±14.0
52.821.4% 34.9% 15,489235,6942,119 (36.4)4,725 (81.1)0.8Public
Anonymous submission
RFTracking
129. online method using public detections
48.5
±14.8
44.917.7% 38.6% 25,739261,7103,089 (57.6)4,813 (89.8)66.9Public
Anonymous submission
SAS_MOT17
130. using public detections
44.2
±12.2
57.216.1% 44.3% 29,473283,6111,529 (30.7)2,644 (53.2)4.8Public
A. Maksai, P. Fua. Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking. In CVPR, 2019.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
SCNet
131. online method using public detections
53.2
±15.4
54.920.0% 32.1% 30,440231,1092,621 (44.4)6,031 (102.2)1.0Public
Anonymous submission
Seq2Seq
132. using public detections
52.7
±12.1
49.417.7% 38.2% 10,819253,8902,396 (43.6)3,374 (61.3)2.6Public
Anonymous submission
SFS
133. online method using public detections
50.0
±12.2
51.819.2% 33.6% 44,810234,5502,993 (51.2)6,858 (117.4)0.9Public
Anonymous submission
SiaIOU
134. using public detections
48.5
±16.7
48.518.9% 38.8% 26,867260,2783,152 (58.5)4,391 (81.5)8.3Public
Anonymous submission
SMOTe
135. online method using public detections
52.1
±12.1
53.818.4% 33.3% 27,571239,7242,691 (46.8)6,134 (106.7)1.0Public
Anonymous submission
SMOT_no
136. online method using public detections
52.9
±12.3
54.118.7% 32.8% 26,703236,3462,702 (46.5)6,340 (109.1)4.9Public
Anonymous submission
SNet_pub
137. online method using public detections
51.7
±12.0
53.418.0% 33.5% 26,809243,0662,735 (48.0)6,157 (108.2)4.9Public
Anonymous submission
SNM17
138. online method using public detections
46.8
±13.8
43.416.2% 37.1% 25,104271,0424,213 (81.1)9,891 (190.3)0.8Public
Anonymous submission
SORT17
139. online method using public detections
43.1
±13.3
39.812.5% 42.3% 28,398287,5824,852 (99.0)7,127 (145.4)143.3Public
A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft. Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP), 2016.
SOTD_MC
140. online method using public detections
48.4
±15.0
45.519.4% 35.9% 33,525255,0912,531 (46.2)4,944 (90.2)67.0Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
SRPN17
141. online method using public detections
40.8
±15.2
40.512.0% 48.0% 9,293321,8112,801 (65.2)7,120 (165.7)4.1Public
Anonymous submission
SRPN
142. online method using public detections
47.8
±13.2
41.417.0% 41.7% 38,279251,9894,325 (78.2)5,355 (96.8)11.8Public
Anonymous submission
STCG17
143. using public detections
51.1
±12.9
54.520.4% 38.6% 32,258241,9161,702 (29.8)2,483 (43.5)66.9Public
Anonymous submission
STRN_MOT17
144. online method using public detections
50.9
±11.6
56.018.9% 33.8% 25,295249,3652,397 (43.0)9,363 (167.8)13.8Public
J. Xu, Y. Cao, Z. Zhang, H. Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. In ICCV, 2019.
TARCA
145. online method using public detections
55.9
±13.3
58.124.2% 35.9% 20,141227,1511,784 (29.9)3,741 (62.6)6.9Public
Anonymous submission
TAR_1
146. online method using public detections
51.6
±11.9
41.421.7% 28.7% 33,514235,8593,629 (62.4)5,949 (102.2)5.6Public
Anonymous submission
TCT
147. online method using public detections
47.5
±27.1
49.323.2% 28.8% 52,209238,7165,541 (96.0)7,368 (127.7)14.1Public
Anonymous submission
TCT4
148. online method using public detections
50.7
±15.4
50.924.5% 25.6% 46,638224,9556,543 (108.8)7,968 (132.5)14.1Public
Anonymous submission
tianyi
149. using public detections
50.0
±13.7
51.020.5% 35.6% 27,839251,1483,312 (59.7)6,234 (112.3)5.9Public
Anonymous submission
TLMHT
150. using public detections
50.6
±12.5
56.517.6% 43.4% 22,213255,0301,407 (25.7)2,079 (37.9)2.6Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TLO17
151. online method using public detections
52.6
±12.9
51.319.5% 38.2% 20,089244,9302,530 (44.7)4,170 (73.7)25.2Public
Anonymous submission
TLO_MHT
152. online method using public detections
53.3
±12.9
53.320.0% 38.7% 22,161238,9592,434 (42.2)4,089 (70.9)2.0Public
Anonymous submission
TM_track
153. online method using public detections
41.1
±14.9
32.813.2% 41.3% 27,606287,51117,408 (355.0)15,197 (309.9)2.5Public
Anonymous submission
TOPA
154. online method using public detections
51.8
±13.5
53.419.6% 33.1% 27,603241,5462,668 (46.7)5,790 (101.2)443.9Public
Anonymous submission
TPbase17
155. online method using public detections
43.3
±15.0
48.216.2% 36.6% 49,992265,8154,194 (79.3)12,103 (228.8)22.2Public
Anonymous submission
TPM
156. using public detections
54.2
±13.0
52.622.8% 37.5% 13,739242,7301,824 (32.0)2,472 (43.4)0.8Public
Anonymous submission
TppNoFPN
157. using public detections
52.4
±15.3
52.618.5% 37.2% 18,635247,1042,726 (48.5)5,461 (97.2)4.2Public
Anonymous submission
Tracktor++
158. online method using public detections
53.5
±14.5
52.319.5% 36.6% 12,201248,0472,072 (37.0)4,611 (82.3)1.5Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
Tracktor++v2
159. online method using public detections
56.3
±13.3
55.121.1% 35.3% 8,866235,4491,987 (34.1)3,763 (64.6)1.5Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
track_bin
160. online method using public detections
57.2
±13.3
54.822.6% 34.9% 9,462229,7922,353 (39.7)3,122 (52.7)0.7Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
track_bnw
161. online method using public detections
56.7
±13.4
52.123.1% 34.5% 8,895233,2062,351 (40.1)3,155 (53.8)0.7Public
Anonymous submission
TrajTrack
162. online method using public detections
56.0
±12.9
57.222.6% 35.1% 14,378231,2122,546 (43.1)3,452 (58.5)1.4Public
Anonymous submission
TriplDSort
163. using public detections
50.7
±15.3
50.520.3% 36.6% 51,739222,2124,397 (72.5)7,352 (121.3)0.6Public
Anonymous submission
TT17
164. using public detections
54.9
±12.8
63.124.4% 38.1% 20,236233,2951,088 (18.5)2,392 (40.8)2.5Public
TIP-21754-2019
TTL
165. online method using public detections
52.3
±12.9
51.319.3% 38.2% 21,617244,5012,779 (49.0)4,290 (75.7)21.5Public
Anonymous submission
TTracker
166. online method using public detections
46.2
±14.0
44.021.0% 35.6% 44,854254,4384,258 (77.6)6,307 (114.9)29.6Public
Anonymous submission
Umot
167. online method using public detections
43.9
±13.8
37.815.2% 38.9% 28,596278,6219,363 (185.0)11,371 (224.6)19.7Public
Anonymous submission
UNS20
168. online method using public detections
46.5
±13.6
47.716.3% 43.1% 19,283280,7881,967 (39.2)3,103 (61.8)12.2Public
Anonymous submission
UTA
169. online method using public detections
53.1
±11.7
54.421.5% 31.8% 22,893239,5342,251 (39.1)6,192 (107.6)5.0Public
Anonymous submission
wangs
170. online method using public detections
48.5
±14.2
45.018.3% 38.8% 25,428261,7553,233 (60.3)4,941 (92.2)66.9Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
XYHv2
171. online method using public detections
39.9
±12.4
23.89.9% 41.8% 29,713296,70412,900 (272.1)12,911 (272.3)7.8Public
Anonymous submission
YoloSort
172. online method using public detections
29.5
±24.1
41.715.0% 36.4% 154,747238,2414,888 (84.6)4,952 (85.7)14.4Public
Anonymous submission
YOONKJ17
173. online method using public detections
51.4
±13.5
54.021.2% 37.3% 29,051243,2022,118 (37.2)3,072 (54.0)3.4Public
K. YOON, J. GWAK, Y. SONG, Y. YOON, M. JEON. OneShotDA: Online Multi-object Tracker with One-shot-learning-based Data Association. In IEEE Access, 2020.
ZM
174. online method using public detections
43.5
±13.9
32.614.5% 39.9% 25,083284,4059,197 (185.4)8,849 (178.4)14.4Public
Anonymous submission
zxbtk17
175. online method using public detections
45.1
±14.7
40.017.7% 31.8% 33,186273,5313,303 (64.1)8,148 (158.1)8.3Public
Anonymous submission
SequencesFramesTrajectoriesBoxes
21177572355564228

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT17-03-SDP

MOT17-03-SDP

(66.8% MOTA)

MOT17-03-FRCNN

MOT17-03-FRCNN

(59.7% MOTA)

MOT17-03-DPM

MOT17-03-DPM

(51.7% MOTA)

...

...

MOT17-14-DPM

MOT17-14-DPM

(21.3% MOTA)

MOT17-14-FRCNN

MOT17-14-FRCNN

(20.6% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark. The frequency is provided by the authors and not officially evaluated by the MOTChallenge.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.