Tracking: Where has it been and where is it going?

Bob Collins Penn State University

BMTT-PETS Workshop Honolulu HI, July 2017

True Story...

1997-2000 Darpa funds the VSAM project in US.

The BAA prohibits proposing tracking research, because "tracking is a solved problem."

Every funded effort did some tracking research.

Explanation

- Why would Darpa in the 1990's think tracking was a solved problem?
- "Military intelligence" 😳
- Radar-based tracking (point-like "objects") was pretty much a solved problem.
- Kalman/EKF/particle filter; JPDAF; MHT were all well-understood.

Vision-based Tracking

- "Tracking" means different things to different people.
- Passive, vision-based "extended object tracking" involves the study of
 - Appearance as well as movement
 - Detection as well as association
- What kind of tracking works depends on data-specific factors.

To Consider: Discriminability

How easy is it to discriminate one object from another?

appearance models can do all the work

constraints on geometry and motion become crucial

To Consider: Observation Rate

Occlusions reduce observation rate regardless of frame rate.

gradient ascent (e.g. mean-shift) works OK

much harder search problem. data association

Other Factors to Consider

single target vs multiple targets (VOT vs MOT)

single camera vs multiple cameras

on-line vs batch-mode (more about this later)

do we have a good generic detector? (e.g. faces; pedestrians)

does object have multiple parts?

Cavaet

- This is not a survey or literature review.
- Trying to identify rough trends in detection, appearance modeling and data association algorithms for tracking.
- It won't necessarily be a source of good future research problems for you to work on.

Detector Evolution

Motion Blobs

background subtraction or frame difference

Blob Merge/Split

Something I'm glad to never think about again.

Detector Evolution

Motion Blobs

background subtraction or frame difference

OpenCV detector - based on Dalal and Triggs 2005

Detector Evolution

Motion Blobs

background subtraction or frame difference

DPM, Felzenswalb et.al. CVPR'08

Category Pose Deformable parts model (Felzenswalb et.al.) Convolutional pose machines (Wei et.al.; Cao et.al.)

Realtime MultiPerson 2D Pose Estimation using Part Affinity Fields Cao, Simon, Wei and Sheikh, CMU [CVPR 2017]

https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation

Detector Evolution

Detector Evolution

Roadmap

Appearance Modeling

• Early methods described color, shape of blobs

Tracking as Classification

- Target tracking treated as a binary classification problem that discriminates foreground object from scene background.
- This point of view opens up a wide range of classification and feature selection techniques that can be adapted for use in tracking.
- Some early works:
 - Collins and Liu, "Online Selection of Discriminative Tracking Features," ICCV'03; PAMI'05
 - Avidan, "Ensemble Tracking," CVPR'05; PAMI'07
 - Grabner, Grabner, and Bischof, "Real-time tracking via on-line boosting," BMVC'06.

Estimated location

Response map

New frame

Adapted from Li et.al., A Survey of Appearance Models in Visual Object Tracking, 2013

Mean-Shift Nostalgia

Real-time blob tracking based on color distributions

Gary Bradski's Camshift, 1998

Real-time camera control, circa 2001

Roadmap

Tracking Algorithms Filtering vs Data Association

- Filtering
 - Bayesian; recursive
 - (continuous) Probability Theory
 - Kalman filter; particle filter; mean-shift; ...
- Data Association
 - Assignment problems
 - (discrete) Combinatorics
 - Kuhn-Munkres; network flow; ...

usually multiple objects

usually single object

Discrete-Continuous

• Early precursor (and still a good baseline)

Kalman filter predictions Data association between predictions and observations in next frame Update KF trajectories

Blackman and Popoli, *Design and Analysis* of Modern Tracking Systems, 1999.

On-line vs Batch-mode

You can afford to do more computation in batch.

However, it becomes tempting to look for the **.Globally.Optimal.Solution.**

After which time, nearly everything you want to do becomes NP-hard.

Important Example: Network Flow

picture from Zhang, Li and Nevatia, "Global Data Association for Multi-Object Tracking Using Network Flows," CVPR 2008.

See also Berclaz et.al. 2011 and Pirsiavash et.al. 2011 (successive shortest path algs)

Limitations of Network Flow

Pros:

- Efficient (polynomial time)
- Uses all frames to achieve a global batch solution

Cons:

- Data association cost functions limited to pairwise terms
- Cannot represent constant velocity or other higher-order motion models
- Will therefore have trouble when appearance information is not discriminative and/or frame rate is low

Why is nearly everything else NP-hard?

- Multi-dimensional assignment is NP-hard, including tri-partite (3 frame) matching
- Integer linear or quadratic programming is in general NP-hard

Multi-Dimensional Assignment

Alternative to network flow allowing higher-order cost functions. Costs and binary decision variables defined over hyperedges rather than edges. NP-hard.

An Interesting Hybrid Model

Decision variables factor pairwise. Allows local updates. Costs costs remain unfactored. Allows higher-order costs.

Collins CVPR'12; Butt and Collins CVPR'13

Roadmap

Methods for intuitively exploring output from a tracking/surveillance system.

VSAM project, 1997-2000

Methods for intuitively exploring output from a tracking/surveillance system.

VSAM project, 1997-2000

Methods for intuitively exploring output from a tracking/surveillance system.

VSAM project, 1997-2000

We could do a much better job today, and mostly automatically, by combining GPS, camera pose estimation; Google Earth and Street View models.

See for example Park, Luo, Collins and Liu 2014

Where are we going

- Specific individual detectors for absolute ID.
- Specializing generic into specific object detectors for re-ID.
- Incorporate body pose evolution into tracking.
- Embrace deep learning...
- Seek provable guarantees for approximate solutions to NP-hard batch-mode problems.
- Get on board the AR/VR wave wrt visualization.