
Application of SORT on Multi-Object Tracking and Segmentation

Franz Koeferl ∗ Johannes Link
Machine Learning and Data Analytics Lab

University of Erlangen-Nürnberg (FAU)

Bjoern Eskofier

Abstract

Multiple object tracking and segmentation (MOTS) on
monocular images using object detectors without any end-
to-end learning of the tracking step has been a common
problem historically. Including the posterior of the object
detector into the tracking step proves to be difficult, because
features from the detection step are reduced to only a seg-
mentation mask, object probability, and class information.
Based on this, solving tasks like combining of segmentation
masks and the actual tracking step is still the main chal-
lenge. We adapt an existing simple online tracking method
(SORT) based on bounding boxes. The tracking process
predicts trajectory using a Kalman filter and matches tracks
to detections using a simple IOU metric. The sMOTSA score
on the test set of KITTI-MOTS are 64.1 (cars), 54.5 (pedes-
trian) and on the test set of MOTS20 is 56.8 (pedestrian).

1. Introduction

Simultaneous tracking and segmentation of objects has
been gaining more and more attention in the last few years.
Application areas like surveillance, competition monitor-
ing, and autonomous driving benefit from online tracking
approaches, as they require high responsiveness to changes
in the environment. This increases the importance of high
performing, generalizable, but also simple approaches for
tracking. One important tracking method, published in the
last years is SORT [3].

There are several key observations when applying SORT
on tracking benchmarks: Trackings are mostly lost when
objects are moving, with a high speed away or towards the
camera or the camera itself moves with a small continuous
speed towards objects. This can have various reasons: (1)
SORT requires a small set of high confidence detections to
function well. This means that essential detections could be
lost, when pre-filtering is applied (2) The Kalman filter in
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SORT cannot predict the trajectory or the bounding boxes
correctly. We explore both possibilities by applying various
adaptations.

2. Related Work
SORT approached the problem of online tracking by a

simple tracking method. High confidence predictions are
matched to existing tracks using the Hungarian algorithm.
Though the algorithm does not outperform the current state
of the art, its simplicity is still an appealing alternative for
tracking tasks.

DeepSORT [9] expanded SORT by adding the velocity
information – similar to our approach – to tracking and
used a Mahalanobis distance based matching, including ap-
pearance and Kalman filter state information. Though, now
more complex, its approach is still simple enough for easy
application.

Recent publications follow a more extensive approach
by combining the detectors, segmentors, and the tracking
to a single problem. Voigtlaender et al. [8] first formulated
this by defining new evaluation metrics, new datasets, and a
baseline method for future comparison.

MaskProp [2] solves this problem by adapting Mask
R-CNN to video sequences. A mask propagation branch
is introduced, which propagates tracking information from
frame to frame. This approach proves to be robust to well-
known artifacts in tracking, like motion blur and object oc-
clusion.

Because the lack of segmentation labels is still a com-
mon issue in multi-object tracking and segmentation, Sun et
al. [7] use a multi-instance semi-supervised learning ap-
proach for exploiting box-level annotation in tracking prob-
lems. They further use reinforcement learning to update
templates used for matching.

3. Methods
Tracking, using existing detections with their respective
segmentation masks is achieved by SORT. We apply vari-
ous adaptations to increase the duration of tracking i.e. we



minimize the number of ID switches (IDS). This way, most
other tracking scores should improve as well, because their
computation is directly dependent on IDS [8].

On each frame SORT, first pre-filters the detections and
then applies a matching step, which assigns each detection
to an existing track. These matches are then filtered again
to remove the wrong matches. The matched tracks’ Kalman
filter is updated, new tracks are added and old tracks are
removed. In the following, we explain each step in more
detail.

Pre-Filtering Each frame, the set of detections are reduced
by removing all detections with a confidence score smaller
than 0.5.
Matching These high confidence detections are then
matched to existing tracks using the Hungarian algo-
rithm [5]. The method requires a score between all detec-
tions and all tracks. SORT calculates this score by com-
puting the IOU – Intersection-over-Union – metric over the
bounding boxes of the detection and the bounding boxes of
the tracks. The latter are predicted by the Kalman filter as-
signed to each track.
Filtering After matching the detections to the existing
tracks, a filtering step is applied, which removes spurious
and random matches. If the IOU of the match is below the
filtering IOU threshold (0.3), the track and the detection are
unmatched.
Kalman Each track has a Kalman filter assigned. If the
track is matched, the filter is updated with the bounding box
parameters of the detection.
Removing and Adding Tracks The remaining unmatched
tracks and detections are updated as well. Each unmatched
detection is added as a new track and initialized as a sepa-
rate Kalman filter. Tracks are removed, if there has been no
match since maxage frames.

Note: The output of SORT is independent of the actual
tracks. Only, tracks which are tracked longer than minhits
frames are used in the output.

In the following, we briefly list our adaptations. In sec-
tion 3.1, an alternative to pre-filtering by merging IOU and
confidence scores in the matching and filtering step is ex-
plained. Section 3.2 describes a way to model the acceler-
ation in the Kalman filter. Finally, we propose two simple
heuristics for computing the merge confidence in section
3.3.

3.1. Removing pre-filtering

The pre-filtering step in SORT is potentially too restric-
tive, because the confidence is usually in regard to the class
of the detected object, but not the probability of the exis-
tence of an object. This means, – even though the object
is detected by the detector – SORT would ignore it for pro-
cessing, because of its low confidence score c. Even worse:

A high confidence score does not imply a higher probability,
that the object is classified correctly [4], meaning the high
confidence predictions still contain many wrong detections.

This could be mitigated, by removing the confidence
based pre-filtering step completely. But this leads to many
false-positive tracks (see section 4.4).

Though, the confidence is smaller, we suspect there still
exists a correlation between the correctness of detections
and the computed confidence. Based on this assumption,
the matching and filtering score is updated to IOUi,j · ci,j
for all detections i and tracks j.

3.2. Kalman Filter

The application of SORT resulted in an interesting prob-
lem. If an object is moving away or towards the camera, the
bounding box prediction by the Kalman filter is too slow to
adapt to the change of bounding box size. This means if a
car is moving away from the camera the bounding box is
shrinking faster, than the actual detection, which leads to a
shrinking IOU score as well.

The Kalman filter is adapted to decrease this effect by
taking the acceleration of the position and the bounding
boxes into account. The acceleration should be able to
model movement, in general, better. We update the Kalman
equations of SORT accordingly.

3.3. Merge Confidence Heuristics

The merge confidence score for each detection is used
to distinguish overlapping segmentation masks and tracks
i.e. if two segmentation masks are overlapping, the seg-
mentation with the higher score is retaining all its pixel for
the final evaluation, whereas lower scores are only retaining
pixels, not already used by the above masks for the evalua-
tion. This way a one-to-one segmentation mapping between
tracks and ground truth can be ensured.

As our baseline, we randomized the score values for each
detection. We compared two heuristics: (1) Sorting the de-
tections regarding their y-coordinate (height in the image)
and assign their respective sorting position as their merge
confidence score (2) Computing and assigning the height
of the detections’ bounding box as their merge confidence
score.

The intuition behind (1) is, that most camera scenes con-
tain a planar on which objects are placed, including the
camera. In this situation, the closer the object is to the
camera, the higher their respective y-coordinate should be.
This means the y-coordinate can be used directly as a dis-
tinguishing feature. Heuristic (2) exploits the intuition, that
far-away objects of similar size – this includes pedestrians
and cars – appear smaller than closer objects. This means
the height of the bounding box is a good indicator of the
distance between the camera and object.



KITTI MOTS MOTSChallenge
train val

# Sequences 12 9 4
# Frames 5,027 2,981 2,862
# Tracks Pedestrian 99 68 228
# Masks Pedestrian

Total 8,073 3,347 26,894
Manually 1,312 647 3,930

# Tracks Car 431 151 -
# Masks Car

Total 18,831 8,068 -
Manually 1,509 593 -

Table 1. Statistics of KITTI MOTS and MOTSChallenge datasets
from Voigtlaender et al. [8]

4. Evaluation

The evaluation focuses on answering two questions: (1)
How much does the merge confidence impact the final re-
sults? (2) Are our approaches competitive to the baseline?

To answer these questions, we first introduce the used
metrics in section 4.2, further we explain the used datasets
in section 4.3 and finally, show our results in section 4.4.

4.1. Setup and Training

As maxage and minhits are critical hyperparameters, we
applied a grid-search on both datasets simultaneously, aver-
aged the sMOTSA score and used the best parameter com-
bination for SORT without pre-filtering. For both datasets,
parameters minhits = 8 and maxage = 7 gave the best
results. Note: We observed a significant change in perfor-
mance, over the whole spectrum from 0 to 30 respectively.
However, a small change of maxage or minhit affected the
results only slightly.

4.2. Metrics

The evaluation of tracking performance of multiple ob-
jects is – using only a single score – difficult. We utilize
the metrics defined in [1, 8], where MOTS denotes ’multi-
object tracking and segmentation’ and MODS ’multi-object
detection and segmentation’:

• sMOTSA(↑): soft MOTS accuracy [8]

• MOTSA(↑): MOTS accuracy [8]

• MOTSAL(↑): MOTS accuracy with log. IDS [8]

• MOTSP(↑): MOTS precision [8]

• MODSA(↑): MODS accuracy [8]

• MODSP(↑): MODS precision [8]

KITTI Car KITTI Ped MOTS Ped
With pre-filtering

IDX 0.07 0.06 0.06
Height 0.02 0.11 0.04

Without pre-filtering
IDX 2.48 4.94 2.36
Height 1.68 5.11 2.46

Table 2. Evaluation of Merge Confidence Computation. Shown are
the differences of sMOTSA to the random baseline for computing
the merge confidence using sorting (IDX) and height. The differ-
ences are averaged over all method and dataset configurations.

• MT(↑): number of mostly tracked trajectories i.e. at
least 80% of the trajectory’s life span has the same la-
bel

• ML(↓): number of mostly lost trajectories i.e. at most
20% of the trajectory’s life span has the same label

• IDS(↓): number of times a tracking ID switches on a
trajectory [1]

Metrics denoted with (↑) have better performance for
higher values. If the metric is annotated with (↓), lower
values mean better results.

4.3. Datasets

The datasets used in the evaluation are KITTI MOTS
and MOTSChallenge from Voigtlaender et al. [8]. KITTI
MOTS was captured in an autonomous driving setting i. e.
camera on top of the car. The labels contain tracking and
segmentation information for classes car and pedestrian.
MOTSChallenge is based on video data in a pedestrian area
and only contains the class pedestrian. The number of sam-
ples and the splits can be seen in Table 1.

The detections are provided by Voigtlaender et al. [8],
which includes their respective segmentation masks. The
detections were created using Mask R-CNN X152 of De-
tectron2 [10] and the segmentation masks refined using re-
finement net [6].

4.4. Results

The evaluation focuses on two aspects. The relative im-
provements by applying the merge confidence computations
and the comparison of all adaptations.

The evaluation of our merge confidence values are vis-
ible in Table 2. We plotted only the sMOTSA score, how-
ever, the observations are similar for the remaining metrics
as well. Both heuristics outperform the random computa-
tion of the merge-score, where the IDX approach is slightly
better. It is also apparent, that the gain, compared to the ap-
proach with pre-filtering is much higher. This is probably
due to the overall lower absolute scores, compared to the
approaches with pre-filtering (see Table 3).



sMOTSA MOTSA MOTSP MOTSAL MODSA MODSP MT ML IDS
With pre-filtering

orig. SORT 63.1 74.0 86.3 75.2 75.2 86.5 42.5 8.8 319
Without pre-filtering

orig. SORT 9.93 22.48 85.00 26.13 26.15 85.40 48.45 2.50 981
SORT 31.80 42.68 85.80 44.68 44.68 86.30 34.53 16.00 546
Kalman 33.85 44.65 85.90 46.50 46.53 86.40 35.33 17.33 505
IOUConf 56.58 66.18 86.80 67.33 67.35 87.20 28.50 21.90 305

Table 3. Evaluation of tracking performance. The labels are as follows: orig. SORT denotes SORT with original parametrization, SORT
with our parametrization, Kalman is SORT with suggested Kalman filter adaptation, IOUConf is our computation method for matching.
The upper table shows the results with pre-filtering and below without pre-filtering. We use the merge confidence computation IDX for all
the results.

The performance for all adaptations are visible in Ta-
ble 3. The conventional application of SORT performs best
in regards to accuracy and recall. Disabling the pre-filtering
step drops the sMOTSA score to 9.93, which matches our
observations, that many wrong detections are used for track-
ing i.e. objects besides persons are tracked. Using this as a
baseline, we improve the results by using the optimized hy-
perparameters by 21.87. The Kalman filter improves the ac-
curacy further. The best method – without pre-filtering – is
using the combination of IOU and confidence for matching.
Although this approach does not reach the same accuracy
score as the original application, it is slightly more precise.
Intuitively, it is due to the reduced amount of ID switches.

Evaluation of the original SORT on the test sets achieved
an sMOTSA score of 64.1 for cars and 54.5 for pedestrians
on KITTI MOTS, and 54.3 on MOTSChallenge. The com-
bined score of all datasets is 56.8.

5. Conclusion

We adapt the tracking approach SORT by postponing the
pre-filtering step to a later stage. This simplification, how-
ever, is accompanied by worse tracking performance. Addi-
tionally, we evaluated simple heuristics for the computation
of the merge confidence computation. The performance in-
creases respectively by 0.02 and 2.48 on the sMOTSA score
for class cars on the KITTI dataset. The performance in-
crease is analogous to the other datasets and the other met-
rics.
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