
EagerMOT: Real-time 3D Multi-Object Tracking and Segmentation via Sensor
Fusion
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Abstract

Multi-object tracking (MOT) enables mobile robots to
perform well-informed motion planning and navigation by
localizing surrounding objects and predicting their future
motion. Existing methods detect and track targets in 3D
space using a depth sensor (e.g. LiDAR) but only up to a
limited range due to the sparsity of the signal. On the other
hand, RGB cameras provide a dense and rich visual sig-
nal to localize even distant objects in the image domain
but at the loss of 3D localization capability. In this paper,
we propose a tracking formulation that eagerly integrates
all available object observations from both sensor modali-
ties in order to obtain a well-informed interpretation of the
scene dynamics. Using images, we can identify distant in-
coming objects, while depth estimates allow for precise tra-
jectory localization as soon as objects are within the range.
Our method is general enough to obtain state-of-the-art re-
sults for several tasks related to multi-object tracking and
segmentation (MOTS) while running in real-time at 90 FPS
on a commodity CPU – a fraction of the cost of competing
tracking methods.

1. Introduction
For safe robot navigation and motion planning, mobile

agents need to be aware of surrounding objects and be able
to foresee their future states. To this end, they need to to de-
tect, segment and – especially critical in close proximity –
precisely localize objects in 3D space across time. Further-
more, to ensure safety of all traffic participants, such meth-
ods should be efficient, reliable, and explainable. As shown
by Weng and Kitani [13], even a simple method with linear
motion models and 3D overlap-driven two-frame data asso-
ciation can achieve competitive tracking performance when
using a strong 3D object detector [10]. However, compared
to image-based, methods that rely on depth sensors (e.g. Li-
DAR) are more sensitive to false positives originating from
partial occlusions and can operate only within a limited dis-
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tance due to signal sparsity. Image-based MOT and MOTS
methods, on the other hand, leverage a rich visual signal to
minimize false positives, gain robustness to partial occlu-
sions, and localize objects with pixel-precision, even when
they are too far to correctly estimate their depth [12, 9].
However, these methods track objects only in the image do-
main and reliable 3D localization remains a challenge.

In this paper, we present EagerMOT, a tracking frame-
work that fuses all available object observations from 3D
and 2D object detectors to obtain the most complete under-
standing of the scene. Using cameras, our method identifies
and keeps track of all targets in the image domain, while
3D detections allow for precise trajectory and motion esti-
mation as soon as objects can be reliably localized in 3D
space. This is achieved by associating object detections,
originating from different sensor modalities, and a track-
ing formulation that allows to update track states even when
only partial (i.e., only image-based or LiDAR-based) object
evidence is available.

When reporting only objects, reliably localized in 3D
space, our method establishes a new state-of-the-art on the
official KITTI tracking benchmark [3] while being signif-
icantly faster than competing methods (≈90 FPS). When
evaluated for the MOTS task, our EagerMOT yields per-
formance, on-par with MOTSFusion [6] while being ≈20
times faster.

2. Related work

2D-based MOT. The majority of the existing vision-based
tracking methods rely on recent advances in the field of ob-
ject detection [8, 4] to detect and track object in the im-
age domain. TrackR-CNN [12] extends Mask R-CNN [4]
with 3D convolutional networks to improve temporal con-
sistency of the detector and an object re-identification head
to use as the data association cue. Tracktor [1] repurposes
the regression head of Faster R-CNN [8] to follow targets
by predicting their bounding boxes in future frames.

3D-based MOT. The recent AB3DMOT paper [13] pro-
posed a simple, yet well-performing 3D MOT method;
however, due to its strong reliance on 3D-based detections,
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Figure 1. Overview of our tracking framework.

it is susceptible to false positives and struggles with bridg-
ing longer occlusion gaps. Our methods presents a frame-
work that combines the localization accuracy of 3D-based
detectors with the precision of 2D object detectors.

Fusion-based Methods. Fusing object evidence from 2D
and 3D during tracking is an under-explored area. Ošep et
al. [7] propose a stereo vision-based approach. At its core
is a tracking state filter that maintains track position jointly,
in 3D and image domain, and can update them using only
partial object evidence. In contrast, our method treats dif-
ferent sensor modalities independently. We track targets in
bsoth domains simultaneously, but we do not explicitly cou-
ple their 2D-3D states.

MOTSFusion [6] fuses optical flow, scene flow, stereo-
depth, and 2D object detections to track objects in 3D space.
Different to that, our method relies only on object detections
obtained from two complementary sensor modalities. As as
a result, we (i) achieve comparable 2D MOTS results and
(ii) are able to track objects in 3D space with significantly
higher accuracy while (iii) being much faster.

3. Approach

Our EagerMOT framework combines complimentary 2D
and 3D (e.g. LiDAR) object evidence while remaining real-
time and suitable for deployment on resource-constrained
systems. As input at each frame, our method only takes a
3D point cloud, a set of 3D object detections 3dDt, and a
camera image with 2D detections 2dDt.

A general overview of the pipeline is illustrated in Fig. 2
and shows its main components: (i) fusion of 3D and 2D ev-
idence that merges detections belonging to the same object,
(ii) two-stage matching that links detections across time to
build tracks, (iii) state update that enables motion forecast-
ing, and (iv) a track lifecycle module that deletes obsolete
tracks and reports information about confirmed ones.

In this paper, we show the merit of our method by com-
bining LiDAR-based object detectors, image-based detec-
tors, and instance segmentation models. However, our ap-
proach is not limited to aforementioned sensor modalities.

Figure 2. Qualitative MOTS results on the KITTI test (Seq. 18).

3.1. Fusion

At input, we obtain two sets of object evidence. Both
sets provide object localization and semantic information.
LiDAR-based object detections 3dDt are parametrized as
3D object-oriented bounding boxes, while image-based ob-
ject detections 2dDt are defined by a 2D bounding box and
an optional pixel-precise segmentation mask (for MOTS) in
the image domain. First, we aim to establish a bi-partite
matching between the two sets.

The fusion module performs this task by associating de-
tections in 3dDt to detections in 2dDt via the Hungarian
algorithm [5] and producing a set of fused object instances
It={I0t , ..., Iit}. The cost matrix for the algorithm is com-
puted based on the overlap between each pair of 3dDi

t and
2dDi

t. Matched detections with overlap above a thresh-
old θfusion form fused instances bothIt ⊆ It containing
both properties: a precise 3D location of the object and its
2D information e.g. bounding box and segmentation mask.
Fusion criterion depends on the sources of information at
hand (see below). Remaining detections form instances
3dIit ⊆ It and 2dIit ⊆ It, containing only one of the prop-
erties. We refer to them as partial observations, or partial
object evidence. Note that, bothIt ⊆ 3dIt and bothIt ⊆ 2dIt.

Fusion criteria. For box-level MOT, the overlap between
each pair of detections is defined in 2D space as the inter-
section over union (IoU) between a 2D bounding box 2dDi

t

and a 2D box projection of a 3D bounding box 3dDi
t.

For MOTS, 2D detections 2dDt are localized with pixel-
level precision. To make use of this additional information,
the overlap between detections is defined over the points in
the input point cloud. For each bounding box 3dDi

t, we de-
termine the set of points it encloses. For each segmentation
mask 2dDi

t, we find the set of points that are covered by the
mask when they are projected onto image space. Then, the
overlap between each 3dDi

t and 2dDi
t is computed as the

IoU between their point sets, which yields more accurate
matching.
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3.2. Matching

During each frame t, fused instances It enter a two-stage
matching process to update existing tracks Tt with new 3D
and/or 2D information.

Track parameterization. Following [7], tracks Tt are pa-
rameterized simultaneously, but independently, in 3D and
2D space. A track’s 3D state is represented by a 3D object-
oriented bounding box and a 3D velocity vector, while its
2D state is represented by a 2D bounding box and an op-
tional 2D segmentation mask. Note than these states do not
have to be fully observed, i.e., tracks might have only 3D
information 3dTt ⊆ Tt, only 2D information 2dTt ⊆ Tt, or
both bothTt ⊆ Tt.
Two-stage data association. In the first matching stage,
instances 3dIt and tracks 3dTt are associated using the Hun-
garian algorithm. Each track’s motion model predicts its
current 3D bounding box position (using a Kalman filter),
and the cost matrix for this association is computed using
3D box IoU between the instances’ 3D bounding boxes and
predicted locations of existing tracks (c.f . [13]).

Matched instance-track pairs 1mITt = {(Iit , T
j
t ), ...}

are confirmed if their IoU is above a certain threshold
θ3d. Remaining matches are discarded and those instances
and tracks are also considered unmatched: 1uIt, 1uTt with
1mITt ∪ 1uIt ∪ 1uTt =

3dIi ∪ 3dTi.
In the second stage, all so far unmatched instances and

tracks (Ii ∪ Ti) \ 1mITt are again considered for associ-
ation. This matching stage is identical to the first one but
uses 2D box IoU as its criterion. Given this formulation,
all types of instances and tracks have the potential to find
their pairings - either by using their 2D detection directly
or by projecting their 3D state to image domain. As before,
associations with IoU below a minimum matching thresh-
old θ2d are considered invalid and are treated as unmatched
instances/tracks.

This second matching stage addresses a few common
scenarios that are ignored by methods that use only one set
of detections: (i) tracks can recover from a partial occlu-
sion when a 3D detector fails but a 2D detector still detects
the object; (ii) tracks representing objects that exit LiDAR
sensing area continue to be tracked and are updated by the
2D object evidence; (iii) when distant but tracked object en-
ters LiDAR sensing range, its track can smoothly initialize
a motion model and start modelling object state in 3D space
in addition to the image domain.

State update. Matched pairs and unmatched instances and
tracks are treated the same way regardless of how many as-
sociation stages they participated in:

(i) All tracks erase their 2D information;

(ii) Matched instances update their states: new measure-
ments for 3D Kalman filters and new 2D states;

(iii) Unmatched instances start new tracks.

In our current implementation, we do not modify or pre-
dict motion of 2D bounding boxes assuming a high frame
rate to guarantee sufficient overlap between static boxes ob-
served in consecutive frames. Adding a prediction model
for the 2D state may further improve the results and remains
our future work.

3.3. Track lifecycle

Following AB3DMOT, we employ a simple set of rules
to manage object trajectories and their lifecycle. Tracks that
have not been updated with any type of instance for a cer-
tain number of frames Agemax are discarded. Tracks that
have had a certain number of matches Fmin are considered
confirmed and report their latest position estimates. To fur-
ther make use of 2D detections, if a track’s latest matched
instance has a score higher than a certain threshold δearly ,
its required Fmin threshold is lowered.

For MOTS, overlapping masks are sorted based on their
distance to the ego vehicle. Closer masks take priority over
more distant masks. If a 3D location is not available for a
particular track, its mask’s distance is assumed to be infi-
nite. If multiple masks with infinite distance are present,
they are sorted by their detection score.

4. Experiments
4.1. Settings

Datasets. We evaluate our performance on three tasks
(i) KITTI MOTS [12], (ii) KITTI 2D MOT [3], and (iii)
KITTI 3D MOT. For MOTS, we follow the evaluation pro-
tocol proposed by [12]. We evaluate 2D MOT on the of-
ficial KITTI MOT benchmark using CLEAR-MOT evalua-
tion measures [2]. For 3D MOT, we follow the definition of
the validation split and evaluation measures from [13]. All
tasks are evaluated for the car and pedestrian classes.

3D detections. For our final model we use a pretrained
state-of-the-art PointGNN [11] 3D object detector. Addi-
tionally, we use detections provided by [13] to ensure a fair
comparison and to measure the impact of detection quality
on tracking performance.

2D detections and segmentation masks. We evaluate our
method using (i) pre-computed object segmentations pro-
vided by [6] and (ii) those provided by the TrackRCNN [12]
network for a fair comparison of our 3D-based tracking sys-
tem to their appearance-based model.

4.2. Results

MOT performance. In Table 1, we compare our 3D MOT
performance to [13]. “Ours (base)“ denotes the variant
where the object detections provided by the baseline are
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Method sAMOTA MOTA MOTP Rec Prec IDs
car Ours 93.43 96.23 80.41 96.55 100 0
car Ours (base) 94.93 93.46 78.39 94.68 100 0
car AB3DMOT 91.78 83.35 78.43 92.17 93.86 0
ped Ours 94.33 93.61 73.23 93.83 99.97 6
ped Ours (base) 83.70 83.06 66.17 83.45 100 0
ped AB3DMOT 73.18 66.98 67.77 72.82 93.28 1

Table 1. 3D MOT evaluation on the KITTI val set.

Method MOTA MOTP Rec Prec IDs FPS
Ours 87.17 85.17 91.19 96.45 31 90
TuSimple 86.62 83.97 90.50 97.99 293 2
MOTSFusion 84.83 85.21 88.76 98.02 275 2
AB3DMOT 83.84 85.24 88.32 96.98 9 213

Table 2. 2D MOT evaluation on the KITTI test set (car).

also used in our framework. With the first association stage
being identical to the one of [13], this experiment highlights
the significant contribution of the second-stage matching to
final model performance. “Ours“ denotes our best perform-
ing variant that uses detections from PointGNN and MOTS-
Fusion as input. As expected, we observe that better 3D de-
tections from PointGNN further improve tracking results,
most notably for the pedestrian class.

In Table 2, we compare our 2D MOT performance on the
KITTI test set to two (peer-reviewed) state-of-the-art meth-
ods. Our method achieves better results at a much higher
speed.

MOTS performance. In Table 3, we show our MOTS per-
formance on the test set and compare to the only two pub-
lished methods. Using the same masks as MOTSFusion,
we obtain comparable results at a much higher frame rate.
“Ours (TrackRCNN)“ denotes the variant where 2D detec-
tions and masks from [12] are used. Since the final vari-
ant (“Ours“) uses exactly the same detections but improved
masks, the difference in their results shows how much im-
pact mask quality has on final MOTS performance. Greyed
out methods are other participants in the challenge and may
use stronger detections.

Ablation experiments. In Table 4, we show a few varia-
tions of our framework. We include different input detec-
tion combinations to illustrate the framework’s flexibility.
Moreover, the variant “GNN+TRCNN Reid“ shows frame-
work’s performance when appearance vectors from TrackR-
CNN are used in the second stage matching instead of sim-
ple box IoU, effectively demonstrating tracking using both
location- and appearance-based association models.

For our standard variant ”GNN+MF Ours”,≈14% of all
car matches were found during the second stage, ≈23% for
pedestrian matches. The variant ”GNN+MF 1stg” shows
framework performance without it. These ablation results
show how different components predictably influence the
framework’s overall performance and demonstrate its gen-
eralization to multiple input sources and association mech-
anisms.

Method sMOTSA MOTSA MOTSP IDs
car MOTSFusion 75.00 84.10 89.30 201
car Ours 74.50 83.50 89.60 457
car TrackRCNN 67.00 79.60 85.10 692
car PointTrack++ 82.80 92.60 89.70 270
car LIFTS 79.60 89.60 89.00 114
ped MOTSFusion 58.70 72.90 81.50 279
ped Ours 58.10 72.00 81.50 270
ped TrackRCNN 47.30 66.10 74.60 481
ped PointTrack++ 68.10 83.60 82.20 250
ped LIFTS 64.90 80.90 81.00 206

Table 3. MOTS evaluation on the KITTI MOTS test set.
car ped

Configuration sMOTSA MOTSA MOTSP sMOTSA MOTSA MOTSP

GNN+MF Ours 85.6 94.4 90.8 59.2 72.7 82.6
GNN+MF 1 stg 74.2 81.6 91.0 58.1 70.8 82.8
GNN+TRCNN 77.2 89.0 87.1 49.1 67.4 75.6
GNN+TRCNN Reid 77.1 88.9 87.1 49.6 68.0 75.6
base+MF 85.4 94.2 90.8 58.4 71.4 82.9
base+TRCNN 76.9 88.7 87.1 49.1 66.9 75.9

Table 4. Ablation study on KITTI MOTS val set.

5. Conclusion
We presented a real-time tracking framework powered

by fused frame-level detections and a simple two-stage as-
sociation module capable of achieving state-of-the-art re-
sults on a commodity CPU. Through experiments we show
our method’s generalization to multiple tracking tasks, dif-
ferent sets of 3D and 2D detections and even different as-
sociation cues. We hope that our framework will serve as a
baseline for future research into accurate and efficient track-
ing.
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bells and whistles. In ICCV, 2019.

[2] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking
performance: The clear mot metrics. 2008:1:1–1:10, 2008.

[3] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the KITTI vision benchmark suite. In CVPR, 2012.

[4] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.
In ICCV, 2017.

[5] Harold W Kuhn. The hungarian method for the assignment problem. Naval
Res. Logist. Quart, pages 83–97, 1955.

[6] Jonathon Luiten, Tobias Fischer, and Bastian Leibe. Track to reconstruct and
reconstruct to track. arXiv:1910.00130, 2019.

[7] Aljoša Ošep, Wolfgang Mehner, Markus Mathias, and Bastian Leibe. Com-
bined image- and world-space tracking in traffic scenes. In ICRA, 2017.

[8] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: To-
wards real-time object detection with region proposal networks. In NIPS, 2015.

[9] Sarthak Sharma, Junaid Ahmed Ansari, J. Krishna Murthy, and K. Madhava Kr-
ishna. Beyond pixels: Leveraging geometry and shape cues for online multi-
object tracking. In ICRA, 2018.

[10] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object pro-
posal generation and detection from point cloud. In CVPR, 2019.

[11] Weijing Shi and Ragunathan (Raj) Rajkumar. Point-gnn: Graph neural network
for 3d object detection in a point cloud. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[12] Paul Voigtlaender, Michael Krause, Aljoša Ošep, Jonathon Luiten, Berin Bal-
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