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Abstract

In this paper, we propose a highly practical fully online
multi-object tracking and segmentation (MOTS) method
that uses instance segmentation results as an input in video.
The proposed method exploits the Gaussian mixture prob-
ability hypothesis density (GMPHD) filter for online ap-
proach which is extended with a hierarchical data asso-
ciation (HDA) and a simple affinity fusion (SAF) model.
HDA consists of segment-to-track and track-to-track asso-
ciations. To build the SAF model, an affinity is computed by
using the GMPHD filter that is represented by the Gaussian
mixture models with position and motion mean vectors, and
another affinity for appearance is computed by using the
responses from single object tracker such as the kernalized
correlation filters. These two affinities are simply fused by
using a score-level fusion method such as Min-max normal-
ization. In addition, to reduce false positive segments, we
adopt Mask IoU based merging. In experiments, those key
modules, i.e., HDA, SAF, and Mask merging show incre-
mental improvements. For instance, ID-switch decreases
by half compared to baseline method. In conclusion, our
tracker achieves state-of-the-art level MOTS performance.

1. Introduction

Multi-object tracking (MOT) has been an emerging re-
search field in the last decade while the representative MOT
benchmark datasets [1, 4, 9] have been released and si-
multaneously tracking-by-detection paradigm has been ex-
ploited as top trend for MOT. Also, breakthroughs in object
detection have been achieved by many deep neural networks
(DNN) based detectors [10, 12, 13, 14] from various sen-
sor domains such as color camera (2D images) and LiDAR
(3D point clouds), respectively. According to those input
sources, the detectors give different outputs, i.e., observa-
tions. For instance, detection responses of [12, 13] are 2D

Figure 1. Examples of detection results in KITTI dataset which
are visualized for the same image. (a) and (c) were obtained from
Regionlets [19] and Mask R-CNN [5] with the camera input, re-
spectively. (b) was obtained from Point R-CNN [14] with LiDAR
3D point clouds input and calibrated to the camera image coordi-
nates. Each object has a class number indicating car or pedestrian.

bounding boxes and those of [10, 14] are 3D boxes. In
addition, K. He et al. [5] introduced a pixel-wise classifi-
cation and detection method, represented by instance seg-
mentation, which has motivated many segmentation based
researches. Figure 1 shows examples of those three kinds
of detections results.

Accordingly, a new MOT task has been most recently ex-
plored aiming for pixel-wise intelligent systems beyond 2D
bounding boxes which is named multi-object tracking and
segmentation (MOTS) that was first introduced in Voigt-
laender et al. [18] with new evaluation measures and a new
baseline method. They also released a new dataset extended
from KITTI [4] and MOTChallenge [9] image sequences.
Luiten et al. [11] proposes a MOTS method which uses fus-
ing of 2D box detection, 3D box detection, and instance seg-
mentation results. Motivated from these MOTS works and
other conventional MOT researches, we propose a highly



Figure 2. Processing pipeline of GMPHD SAF with input (images and instance segmentation results) and output (MOTS results). Key
components are Hierarchical data association (HDA), Mask merging, and Simple affinity fusion (SAF). HDA has two association steps:
S2TA and T2TA. SAF executes each affinity fusion in each association step while Mask merging runs once between S2TA and T2TA.

practical online MOTS method in this paper. Our contribu-
tions are summarized as follows:

1) We propose a highly practical online MOTS
method which is based on (a) the GMPHD filter
and consists of (b) Hierarchical data association
(HDA), (c) Mask merging, and (d) Simple affinity
fusion (SAF). These four modules successfully
build a feasible online MOTS framework.
2) We evaluate the proposed method on a state-
of-the-art datasets [18]. Evaluation results on
the training sets show incremental improvements
compared to a baseline method. In the results on
test sets, our method not only shows the best per-
formance against state-of-the-art published meth-
ods but also achieves state-of-the-art level perfor-
mance against state-of-the-art unpublished meth-
ods which are available at the leaderboards of
KITTI-MOTS and MOTSChallenge websites.

We introduce the proposed method in Section 2 in de-
tail and discuss the experimental results in Section 3, and
conclude this paper in Section 4. From now on we will use
GMPHD SAF as the abbreviation for the proposed method.

2. Proposed method
The GMPHD filter [17] has been widely used for online

approach in state-of-the-art 2D box MOT methods [2, 3, 8,
16]. Thus, we exploit it for online multi-segment track-
ing i.e., MOTS. GMPHD SAF consists of four key com-
ponents: the GMPHD filter based tracking process, hierar-
chical data association (HDA), Mask merging, and Simple
affinity fusion (SAF). In this section, we address what in-

puts/outputs those key modules work with in HDA, how po-
sition and motion affinity and appearance affinity are fused
by SAF, and what metric is used for Mask merging, as de-
scribed in Figure 2.

2.1. The GMPHD filter

The main steps of the GMPHD filtering based tracking
includes Initialization, Prediction, and Update which are in-
troduced in supplementary material [15] in detail.

Observations (instance segmentation) and states (seg-
ments tracks) at time t are represented as follows:

Xt = {x1
t , . . . ,x

Nt
t }, (1)

Zt = {z1t , . . . , z
Mt
t }, (2)

where a state vector xt is composed of {x, y, vx, vy} with
track ID, and segment mask. x, y, and vx, vy indicate the
center coordinates of the mask’s 2D box, and the velocities
of x and y directions of the object, respectively. An obser-
vation vector zt is composed of {x, y} with segment mask.
A Gaussian model representing xt is initialized by zt, pre-
dicted to xt+1|t, and updated into xt+1 by zt+1.

2.2. Hierarchical data association

HDA has two-step association: Segment-to-track associ-
ation (S2TA) and Track-to-track association (T2TA). Each
association has different observations and states as inputs to
compute affinitypm and affinityappr, see Figure 2.
Segment-to-track association. Inputs at time t are equal to
observations (2) and states (1).
Track-to-track associations. Observations and states (in-
puts) are live tracks and lost tracks. Live and lost tracks’
vectors have the information of (1) with birth time tb and



Trackers
Modules KITTI-MOTS Training Sequences

S2TA Mask Merging T2TA Cars Pedestrians
SAF IoU Mask IoU SAF sMOTSA↑ MOTSA↑ IDS↓ FM↓ sMOTSA↑ MOTSA↑ IDS↓ FM↓

Ours

p1 73.7 84.0 1322 1250 56.4 71.2 800 721
p2 X 76.3 86.6 642 606 59.6 74.5 428 387
p3 X X 76.8 86.5 598 572 59.5 74.3 429 391
p4 X X 77.0 86.7 581 557 59.6 74.4 423 382
p5 X X X 77.8 87.6 362 518 61.2 76.0 245 341

Table 1. Evaluation results on KITTI-MOTS training sequences. In p3, p4, and p5, merging threshold tm is set to 0.4.

Trackers
MOTSChallenge Training Sequences

Pedestrians
sMOTSA↑ MOTSA↑ IDS↓ FM↓

Ours

p1 64.5 75.9 686 604
p2 64.5 75.9 535 487
p3 64.6 75.9 565 523
p4 65.0 76.3 539 497
p5 65.6 77.1 335 509

Table 2. Evaluation results on MOTSChallenge training set. In
p3, p4, and p5, merging threshold tm is set to 0.4.

lost time tl. Live track’s tb is identical to current time t and
tl is not assigned yet. Lost track’s tl is less than t that means
the track is lost before the current time.

By using these inputs in S2TA and T2TA, affinity
(cost) matrices are computed and we use the Hungarian
method [7] to solve the cost matrices. Then, some observa-
tions are assigned to associated states for update, and other
non-assigned observations initialize new states.

2.3. Simple affinity fusion

Fusing affinities obtained from different domains re-
quires a normalization step which can balance the differ-
ent affinities and avoid bias by one affinity which may have
higher magnitude than others.
Position and motion affinity. In fact, the GMPHD filter
includes Kalman filtering that designs prediction by using
linear motion with noise. Therefore, position and motion
affinity between ith state and jth observation gives the prob-
abilistic value w · q(z) by the GMPHD filter as follows:

A
(i,j)
pm = wi · qi(zj), (3)

which is acquired in Update step of the GMPHD filter [15].
Appearance affinity. We exploit the Kernelized correlation
filter (KCF) [6] for computing appearance affinity between
ith state and jth observation. The affinity can be derived as
follows:

A
(i,j)
appr = 1−

∑widthj
c=xj

∑heightj
r=yj d̄

(i,j)
KCF (r, c)

widthj · heightj
, (4)

where d̄(·) indicates the normalized KCF distance value that
has ranges 0.0 to 1.0 at a pixel.
Min-max normalization. Apm and Aappr have quite dif-
ferent scales, e.g., Apm = {0.0, . . . , 10−3} and Aappr =
{0.4, . . . , 1.0} in our experiments. To fuse two affinities,
we apply Min-max normalization to them as follows:

Ā(i,j) =

A(i,j) −min1≤i≤N
1≤j≤M

A(i,j)

max1≤i≤N
1≤j≤M

A(i,j) −min1≤i≤N
1≤j≤M

A(i,j)
. (5)

Thus, we propose a simple affinity fusion model as follows:

Cost(xi
t|t−1, z

j
t) = −α · ln Ā(i,j)

pm Ā
(i,j)
appr, (6)

where α is a scale factor empirically set to 100. If one of
affinities is close to zero value like 10−39, the cost is set to
10000 to avoid that final cost becomes infinity value. Then,
the final costs ranges 0 to 10000.

2.4. Mask merging

As shown in Mask merging module in Figure 2, we uti-
lize segment mask based IoU (Mask IoU) measure which
can calculate 2D pixel-wise overlapping ratio between two
objects. Conventional 2D box based measure intersection-
over-union (IoU) and Mask IoU are represented by:

IoUAB =
bbox(A) ∩ bbox(B)

bbox(A)∪bbox(B)
, (7)

Mask IoUAB =
mask(A) ∩mask(B)

mask(A)∪mask(B)
. (8)

3. Experiments
GMPHD SAF is evaluated on MOTSChallenge and

KITTI-MOTS [18]. Inputs are image sequences and in-
stance segmentation results created by Mask R-CNN X152
of Detectron2 [20]. We uniformly truncate detection re-
sults under threshold values that are 0.6 for cars and 0.7
for pedestrians. All experiments are conducted on Intel i7-
7700K CPU @ 4.20GHz and DDR4 32.0GB RAM without
GPU-acceleration. In Table 1 and 2, our MOTS trackers
from p2 to p5 show incremental improvements compared
to baseline method p1 whenever adding the key modules



Trackers
MOTSChallenge Test Sequences KITTI-MOTS Test Sequences

Pedestrians Cars Pedestrians
sMOTSA↑ MOTSA↑ MOTSP↑ IDS↓ sMOTSA↑ MOTSA↑ MOTSP↑ IDS↓ sMOTSA↑ MOTSA↑ MOTSP↑ IDS↓

Track R-CNN [18] 40.6 55.2 76.1 576 67.0 79.6 85.1 692 47.3 66.1 74.6 481

MOTSFusion [11] - - - - 75.0 84.1 89.3 201 58.7 72.9 81.5 279
Ours (p5) 61.8 73.4 84.8 524 75.4 86.7 87.5 549 62.8 78.2 81.6 474

Ours (p5∗) 68.4 82.6 83.0 569 ← Scene-specific truncation was used. (0.2 for MOTS20-07 and 0.6 for others)

Table 3. Evaluation results on MOTSChallenge and KITTI-MOTS test sets.

“SAF in S2TA, Mask merging, and SAF in T2TA” one by
one. In Table 3, our final model p5 not only achieves the
best sMOTSA, MOSTA, and MOTSP scores against state-
of-the-art methods [11, 18] but also runs at 11.4 FPS and
3.39 FPS speeds on KITTI-MOTS and MOTSChallenge.

4. Conclusion
In this paper, we propose a highly practical MOTS

method named GMPHD SAF which a feasible and easily
reproducible combination of four key modules: GMPHD
filter, Hierarchical data association, Mask merging, Sim-
ple affinity fusion. Those modules show incremental im-
provements in evaluation on training sets of KITTI-MOTS
and MOTChallenge. Especially, ID-switch decreases by
half compared to baseline method. In test sets of those
two datasets, GMPHD SAF achieves the best performance
against the state-of-the-art MOTS methods.
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