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Abstract

In recent years, the computer vision society has made
significant progress in multi-object tracking (MOT) and
video object segmentation (VOS) respectively. Further
progress can be achieved by effectively combining the fol-
lowing tasks together – detection, segmentation and track-
ing. In this work, we propose a multi-stage framework
called “Lidar and monocular Image Fusion based multi-
object Tracking and Segmentation (LIFTS)” for multi-
object tracking and segmentation (MOTS). In the first stage,
we use a 3D Part-Aware and Aggregation Network detector
on the point cloud data to get 3D object locations. Then a
graph-based 3D TrackletNet Tracker (3D TNT), which takes
both CNN appearance features and object spatial informa-
tion of detections, is applied to robustly associate objects
along time. The second stage involves a Cascade Mask
R-CNN based network with PointRend head for obtaining
instance segmentation results from monocular images. Its
input pre-computed region proposals are generated from
projecting 3D detections in the first stage onto a 2D im-
age plane. Moreover, two post-processing techniques are
further applied in the last stage: (1) generated mask results
are refined by an optical-flow guided instance segmentation
network; (2) object re-identification (ReID) is applied to
recover ID switches caused by long-term occlusion; Over-
all, our proposed framework is evaluated on BMTT Chal-
lenge 2020 Track2: KITTI-MOTS dataset and achieves a
79.6 sMOTSA for Car and 64.9 for Pedestrian, with the 2nd

place ranking in the competition.

1. Introduction

Multi-Object Tracking (MOT) is the task of associat-
ing objects in a video and assigning consistent IDs for the
same identities. On the other hand, Video Object Seg-
mentation (VOS) task is aimed to generate the object seg-
mentation masks in video frames. However, many avail-

Figure 1. The framework of the proposed LIFTS, which consists
of a three-stage pipeline: 3D object detection and tracking, pre-
computed proposals and masks generation, and post-processing.

able approaches can successfully track objects when they
are consistently visible, but fail in the long-term through
either disappearances or occlusions, which are caused by
heterogeneous objects, interacting objects, edge ambiguous
and shape complexity. Jointly solving the two problems of
multi-object tracking and segmentation (MOTS) can over-
come respective difficulties and improve both of their per-
formances.

To tackle the MOTS problems, we propose a multi-stage
framework named “Lidar and monocular Image Fusion for
multi-object Tracking and Segmentation (LIFTS)”. The
LIFTS consists of a three-stage pipeline, which is shown in
Figure 1. First, given the LiDAR point cloud, a 3D Part-
Aware and Aggregation Network is adopted to get accu-
rate 3D object locations. A graph-based TrackletNet, which
takes both CNN appearance and object spatial information,
is then applied to robustly associate objects to form track-
lets along time. We additionally interpolate and recover
the unreliable/missing detections in each tracklet to form
longer trajectories. In the second stage, we project each
frame of these trajectories onto 2D image plane using the
camera intrinsics and treat them as the pre-computed region
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proposals for a Cascade Mask R-CNN [2] based network
with a PointRend [4] segmentation branch. For those ob-
jects that are not detected by the 3D detector from LiDAR
point cloud data but detected by the 2D detector from im-
ages, we use Hungarian algorithm to merge these detections
with existing trajectories. This is able to bridge 3D world
space and 2D image space consistently and produces a high-
quality mask for each instance in every frame. Moreover,
two post-processing stages are further applied in the last
stage: (1) the generated masks from the second stage are
refined by a proposed optical-flow guided instance segmen-
tation network; (2) the refined masks are then used for ob-
ject re-identification (ReID) to recover ID switches caused
by long-term occlusions.

2. Related Work
Multi-Object Tracking. Recent multiple object track-

ing (MOT) methods have largely employed tracking-by-
detection schemes, meaning that tracking is done through
association of detected objects across time. Most works
[12] on MOT are typically done in 2D image space. How-
ever, lack of depth information in 2D tracking causes failure
in tracking objects long-term due to disappearances and oc-
clusions. Given LiDAR point cloud, [11] uses standard 3D
Kalman filters and Hungarian algorithms to associate detec-
tions from LiDAR, which causes fewer ID switches and can
perform long-term tracking.

Multi-Object Tracking and Segmentation. MOTS is
proposed as a new task to track multiple objects with in-
stance segmentation. Voigtlaende et al. [9] propose a base-
line approach Track R-CNN, which can jointly address de-
tection, tracking, and segmentation via a single convolu-
tional network. While the aforementioned method is able
to produce tracking outputs with segmentation masks, the
network is trained under multiple task, resulting in increas-
ing the tracking performance while degrading the detection
and segmentation performance.

3. The Proposed Method
3.1. 3D Object Detection and Tracking

3D Part-Aware and Aggregation Network. We adopt
a state-of-the-art point-cloud-based 3D object detector, the
part-aware and aggregation neural network (Part-A2 net)
[8]. The Part-A2 detector produces 3D bounding boxes pa-
rameterized with (x, y, z, h, w, l, θ), where (x, y, z) are the
box center coordinates, (h,w, l) are the height, width and
length of each box respectively, and θ is the orientation an-
gle of each box from the bird’s eye view.

3D TrackletNet Tracker. To take advantage of the
temporal consistency for improving the localization perfor-
mance further, we need tracking to associate corresponding
detected objects along time. The proposed 3D TrackletNet

Tracker (3D TNT) takes both discriminative CNN appear-
ance features and accurate object spatial information from
each frame to ensure tracking robustness. The 3D TNT
is extended from the 2D TNT [10], which builds a graph-
based model that takes 2D tracklets as the vertices and use
a multi-scale CNN network to measure the connectivity be-
tween two tracklets. Our 3D TrackletNet Tracker consist of
three key components:

(i) Tracklet Generation: Given the refined object local-
ization of each frame, generated by 2D box appearance sim-
ilarity based on CNN features derived from the FaceNet [7]
and 3D intersection-over-union (3D IoU) between adjacent
frames, is denoted as a node (v ∈ V ) in the graph.

(ii) Connectivity Measurement: Between every two
tracklets, the connectivity (similarity) pe(e ∈ E) is mea-
sured as the edge weight in the graph model. To calculate
the connectivity, a multi-scale TrackletNet is built as a clas-
sifier, which can concatenate both temporal (multi-frame)
and appearance features for the likelihood estimation. For
each frame t, a vector consisting of the 7-D detected object
measurements (x, y, z, h, w, l, θ) from the Part-A2 detector,
concatenated by an 512-D embedding appearance feature
extracted from the FaceNet, is used to represent an individ-
ual feature of the input frame.

(iii) Graph-based Clustering: After the tracklet graph is
built, graph partition and clustering techniques, i.e., assign,
merge, split, switch, and break operations are iteratively
performed to minimize the total cost on the whole graph.

Based on the tracking results from the 3D TNT, we are
not only able to associate every object across frames, but
also can deal with errors caused by the occlusions and miss-
ing detections. For those unreliable/missing detections, we
use Lagrangian interpolation to recover/fill-in those frames
to form longer trajectories.

3.2. Pre-Computed Proposals and Masks Genera-
tion

In Sec. 3.1, accurate locations are obtained by a 3D
object detector and objects are robustly associated across
frames using the proposed 3D TrackletNet Tracker. In order
to produce outputs with segmentation masks, we project all
the 3D bounding boxes inside each frame onto the 2D im-
age plane by using camera intrinsics, object locations and
orientation angles and treat the projected ROIs as the pre-
computed region proposals to a two-stage image-based ob-
ject detection framework. For smaller objects that are not
detected by Part-A2 network but are detected by the image-
based detector, we use Hungarian algorithm to merge these
detections with existing trajectories.

We utilize the Cascade Mask R-CNN framework as our
basic architecture. Each detector inside the cascade is se-
quentially more effective in selecting higher quality detec-
tions compared with its predecessor. The network can then



Figure 2. Qualitative results of the proposed LIFTS method on KITTI-MOTS datasets. The top two rows are the results for Cars, and the
bottom two rows show the results for Pedestrians.

make itself capable of handling proposals through multiple
quality levels and generate better detection results.

In addition to the detection head, we use PointRend [4]
as our mask head for segmentation. Compared with stan-
dard mask head, PointRent head, which iteratively renders
the output mask in a coarse-to-fine fashion, upsamples its
previously predicted segmentation using bilinear interpo-
lation and then selects 50 most uncertain points to predict
their labels using a point-wise feature representation. In
this case it can predict masks with substantially finer details
around object boundaries.

3.3. Post-Processing

Optical-Flow Guided Mask Propagation Network.
Followed the idea by [1], which shows the highly accu-

rate object segmentation in videos can be achieved by using
temporal information, the segmentation mask can be fur-
ther refined from the previous frame’s ”rough” estimate of a
tracked object. In order to guide the pixel labeling network
to segment the object of interest, we begin by expanding the
network input from RGB to RGB+mask channel. The extra
mask channel is meant to provide an estimate of the visible
area of the object in the current frame, its approximate lo-
cation and shape. Given an initial mask estimate from the
previous frame t − 1 in Sec. 3.2, we train the network to
provide a refined mask output for the current frame t.

We also consider to employ the optical flow as a source
of additional information to guide the segmentation. More
specifically, given a video sequence, we compute the opti-
cal flow using FlowNet2 [3]. In parallel to the above frame-
work, we proceed to compute a second output mask using
the magnitude of the optical flow field as the input image.
We then fuse by averaging the output scores given by the
two parallel networks. It can be shown in the experimental
results, optical flow provides complementary information to
the mask quality, improving the overall performance.

Re-identification Network. A ReID approach is also
applied to reconnect tracklets due to occlusions or abrupt
motions. We use the trajectory-level of features for ReID
in the tracking refinement process. For frame-level feature
extraction, we adopt the ResNet50 network pre-trained on
ImageNet as our feature extractor. Furthermore, temporal
information is also considered to establish a more repre-
sentative feature by using temporal attention (TA) to con-
vert weighted average of the frame-level features and into
clip-level features. Note that some frames of the object
might be highly occluded by other objects, and we try to
lower the weights of these frames. Finally, we add a max-
pooling layer for these clip-level features to generate the
final tracklet-level feature.

4. Experiments

4.1. Dataset and Evaluation

KITTI-MOTS [9] is a driving scenario dataset for both
car and pedestrian tracking task. It consists of 21 training
sequences and 29 testing sequences. We evaluate our per-
formance based on sMOTSA metrics, which accumulates
the soft number of true positives, false positives, and ID
switches.

4.2. KITTI-MOTS Performance

The performance of MOTS for both Car and Pedestrian
are evaluated using sMOTA, which measures segmentation
as well as detection and tracking quality. Qualitative per-
formance is shown in Fig. 2. In the BMTT Challenge 2020
Track2 (KITTI-MOTS), our method ranks the second place
among the total 16 valid submissions. The performance of
top-selected algorithms is shown in Table 1 for Car and Ta-
ble 2 for Pedestrian.



Method sMOTA ↑ MOTSA MOTSP MOTSAL MODSA MODSP MT ML IDS ↓ Frag
PointTrack++ 82.80 92.60 89.70 93.30 93.30 92.10 89.10 1.2 270 584

MCFPA 77.00 87.70 88.30 89.10 89.10 90.80 82.90 0.6 503 724
GMPHD SAF 75.40 86.70 87.50 88.20 88.20 90.10 82.00 0.6 549 874

MOTSFusion [6] 75.00 84.10 89.30 84.70 84.70 91.70 66.10 6.2 201 572
TrackR-CNN [9] 67.00 79.60 85.10 81.50 81.50 88.30 74.90 2.3 692 1058

LIFTS (ours) 79.60 89.60 89.00 89.90 89.90 91.40 79.10 2.9 114 532

Table 1. Competition results for Car of KITTI-MOTS, ours is marked bold.

Method sMOTA ↑ MOTSA MOTSP MOTSAL MODSA MODSP MT ML IDS ↓ Frag
PointTrack++ 68.10 83.60 82.20 84.80 84.80 94.00 66.70 4.80 250 521

MCFPA 67.20 83.00 81.90 84.30 84.30 93.80 67.00 3.00 265 484
GMPHD SAF 62.80 78.20 81.60 80.40 80.50 93.70 59.30 4.80 474 696

MOTSFusion [5] 58.70 72.90 81.50 74.20 74.20 94.10 47.40 15.60 279 534
TrackR-CNN [9] 47.30 66.10 74.60 68.40 68.40 91.80 45.60 13.30 481 861

LIFTS (ours) 64.90 80.90 81.00 81.90 81.90 93.60 61.50 8.90 206 577

Table 2. Competition results for Pedestrian of KITTI-MOTS, ours is marked bold.

5. Conclusion
We have presented a framework in which both tracking

and segmentation can be performed together and can benefit
from each other. We first use a Part-Aware and Aggregation
Network given the LiDAR point cloud data to get accurate
3D object locations, then a proposed graph-based 3D Track-
letNet Tracker is applied to associate object across frames.
We treat the projected 2D ROI as the pre-computed region
proposals and send them into a cascade Mask R-CNN net-
work with PointRend segmentation. Finally, a proposed
optical-flow guided instance segmentation network and a
ReID approach is applied to further refine both segmenta-
tion and tracking results. Quantitative and qualitative ex-
periments have demonstrated that our system can achieve
high accuracy in sMOTA for both Cars and Pedestrians and
outperforms other competing methods.
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