
Abstract

A Siamese convolution neural network (CNN) is the most 
popular data association method in the field of object 
tracking owing to its good matching performance and
network sharing support. However, it is unsuitable for real-
time tracking in low-end systems because numerous 
parameters are still required. Unlike with traditional data 
association methods, to build an efficient co-learning 
framework in terms of the multiple object tracking (MOT)
performance and tracking speed, , we do not apply a CNN-
based Siamese structure. Instead, we propose a Siamese
random forest (RF) framework that enables high-speed 
learning and classification by combining RF with Siamese 
structures. During the learning process, a feature for 
SiameseRF uses a densely transformed feature map of a 
CNN network for object detection, and the shared RF is 
learned in the directions of increasing similarity to the first 
pair (anchor, positive) and increasing difference between 
the second pair (anchor, negative). Unlike a CNN, the two 
SiameseRFs do not share weights, but do share a rule 
structure that composes a tree. The proposed method was 
successfully applied to various MOT benchmark datasets 
while maintaining a robust tracking performance despite 
the camera movement or crowded pedestrians.

1. Introduction

Multiple object tracking (MOT) is essential for various 
tracking technologies such as video surveillance, 
autonomous driving, a human-computer-interface (HCI), 
and augmented reality (AR). Many online and offline MOT 
tracking techniques have recently applied a deep neural 
network (DNN) instead of a conventional tracking 
technique. However, offline tracking is unsuitable for real-
time object monitoring or other applications because all 
frames must be considered to verify the tracking path. For 
online MOT, Kalman- or particle-filter based methods have 
mainly been used [1], although studies on DNN-based 
MOT have recently produced remarkable results [2–6]. As 
a common point, both offline and online MOT commonly 
use the tracking-by-detection (TBD) paradigm. However,
regardless of how good the detection method is, if an object 

is missed or an inaccurate object is detected owing to an 
occlusion of the object or camera shaking, the tracking 
performance can be significantly deteriorated. Therefore, 
various data association methods have been proposed to 
compensate for the inaccuracy of MOT detection. Real-
time tracking in MOT is closely related to the efficiency of 
the data association. Siamese convolutional neural network 
(CNN) [2][5][6][7] based trackers have received significant 
interest in real-time tracking. A Siamese CNN applies the 
same network to the detection and tracker and calculates the 
similarity based on the difference in the output feature value. 
Therefore, a Siamese CNN does not need to maintain a 
separate network structure and has an advantage of fast 
tracking. Although a Siamese structure shows a good 
matching performance between objects, the shared network 
for similarity matching still has a large number of hyper 
parameters and a slow tracking speed owing to the complex 
network structure when combined with a CNN.

2. Related Studies

In studies on MOT tracking, long-term appearance 
models using features from a DNN [8], DeepMatching [9], 
and a quadruplet convolutional neural network [10] have 
/demonstrated a better tracking performance. However, 
such methods are unsuitable for online tracking because the 
network structure is complicated and the object tracking 
path of multiple frames must be analyzed.

Tracking using a Siamese CNN for person re-
identification in MOT has recently been studied 
[2][5][6][7]. A Siamese CNN applies the same network to 
the detection and tracker and calculates the similarity in the 
difference between output function values. Therefore, a 
Siamese CNN does not need to maintain a separate network 
structure and has the advantage of fast tracking. Although a 
Siamese CNN shows a good matching performance 
between objects, a shared network for similarity matching 
still includes numerous hyper parameters and a slow 
tracking speed owing to a complex network structure. 
Therefore, Siamese CNN-based MOT methods may be 
infeasible for real-time tracking in a real-world
environment.
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3. Siamese Random Forest

To build an efficient joint learning framework in terms 
of the MOT performance and tracking speed, unlike 
existing methods, we do not use a CNN-based Siamese 
structure. Instead, we propose a Siamese Random Forest 
(RF) framework that combines an accurate RF with a 
Siamese structure with a high-speed learning and 
classification. When an object is detected, it must be input
into a Siamese RF to measure its similarity to existing 
trackers. The most basic but important step for measuring 
the similarity is currently the feature extraction step. RF 
shows an extremely good performance for tabular data but 
has a disadvantage in terms of a poor performance when 
applying unconditioned data such as images and video. 
Therefore, an optimal feature extraction step that can 
effectively distinguish objects should be applied as a 
preprocess of a Siamese RF. In this study, we apply global 
averaging pooling (GAP) to feature maps obtained from 
different layers of darknet53, the backbone network of 
YOLOv3 [11], to reduce the computation time for feature 
extraction. The GAP method is used to reduce the spatial 
dimensions of a 3D tensor and has the advantage of 
minimizing an overfitting by reducing the total number of 
parameters in the model. We extract partial feature maps of 
the first and second layers corresponding to the bounding 
box (bbox) of darknet. Next, two 1 × 1 × C feature vectors 
are generated by applying GAP to each partial feature map. 
The created features are called condensed features, and two 
condensed features are concatenated to become one final 
condensed appearance feature (CAF).

During the learning process of SiameseRF, an initial RF 
consisting of L ensemble trees is created. Although two RFs 
receive {anchor, positive} pairs and {anchor, negative} 
pairs as input, both RFs share the same structure. Therefore,
during the learning process, the shared RF is learned in the 

direction of increasing similarity to the first pair and in the 
direction of increasing difference to the second pair, as 
shown in Fig. 1. Unlike a Siamese CNN, the two RFs do 
not share weights, but they do share rules composing a tree. 
As the input of each RF, the CAF difference, which are the 
appearance features of each image, is input as a feature. A 
vector �� ∈ ℝ�×�  is a distance vector if and only if the 
following holds:

AP� = �(�� ,  ��), AN� = �(�� , ��), ��� 1 ≤ � ≤ m,               
(1)

where d is an L2 distance function, �� ∈ ���ℎ��,  �� ∈
��������, �� ∈ ��������, and m is the number of samples 
in each label of anchor, positive, and negative.

To repeat the learning phase of a shared RF, in this study, 
a K-fold cross validation for the training process is adopted 
to improve the accuracy of the model. The K-fold cross-
validation method automatically determines the optimal 
rule number and parameters while reducing the risk of an 
over-fitting. The learning process of Siamese RF is as 
follows:
• Step 1: K-1 folds are selected from the entire training 

dataset S, and the other folds are used for the validation 
set.

• Step 2: The AP-distance vector for a sample pair {anchor, 
positive} and the AN-distance vector for a sample pair 
{anchor, negative} are estimate using the CAF.

• Step 3: The training sample pairs are input into each RF 
sharing the rules. The decision to update rules 
consisting of a shared RF depends on whether the K-fold 
cross-validation converges. 

• Step 4: RF composed of L trees in step p is trained using 
the A-P and A-N distance vectors.

• Step 5: After the training of K-1 folds, A-P and A-N 
distance vectors are obtained from the pairs of {anchor, 
positive} and {anchor, negative} samples in the 

Fig. 1. The procedure of SiameseRF learning. Two RFs receive A-P and A-N distance vectors of {anchor, positive} and {anchor, negative} pairs as input. 
The shared RF is learned in the direction of increasing similarity to the first pair and increasing difference to the second pair.



validation set. The triplet loss using Eq. (2) is calculated 
by applying the AP and AN distance vectors to the learned 
RF. This process is performed for all n pairs in the 
validation set.

�(�, �, �)� =
���(‖1 − RF� (��)‖� − ‖RF�(��)‖� + �, 0),   (2)

• Step 6: Store the learned RF structure and total loss J. 
Steps 1–6 are repeated until each K fold has been used as 
the testing fold.

�� = ∑ �(�� , ��, ��)�
��

���                              (3)

• Step 7: When the learning is completed for all K-folds, the 
RF with the smallest total loss J is determined as the final 
Siamese RF.

� = ��� min
�∈�

��                            (4)

  
After training a SiameseRF through K-fold verification,
during the actual tracking, the CAF extracted from a 
detection and a tracker are input into the learned SiameseRF, 
and the similarity probability of the two objects becomes 
the appearance score for an association.

In every frame, detections are assigned to the tracker 
based on the Hungarian method and three measures, namely,
the inverse probability value of SiameseRF (������), aspect 
ratio (������), and L1-center distance (���). Finally, for a 
cost function of the association matching, we combine three 
distance measures using a weighted sum:

c(tr�, d�) = α ∙ P�����(tr�|d�) + β ∙ A�����(tr�, d�) +
γDis(tr�, d�),                                                                    (5)

where α, β, and γ denote the weights, which are 0.6, 0.2, 
and 0.2, respectively, and these weights were found based 
on several experiments.

If the detected object and tracker are matched, the state 
of the tracker is updated by combining the states of the 
current tracker and detection. If the tracker does not find a 
match during τ frames, the object is considered to have 
disappeared and is deleted. Using the same method, if the 
detected object does not match any tracker, the object is 
assigned as a potential tracker, and if a match occurs 
between the tracker and detected object over τ frames, it is 
assigned as a new tracker; otherwise, a false detection is 
recognized and the object is removed.

4. Experiment

4.1. MOTSChallenge 3: Tracking Only

The proposed algorithm was successfully applied to 
MOTSChallenge workshop 2020 benchmark video 
sequences captured from a stereo camera, which include 
multiple objects in various environments. Specifically, in 
the high accuracy detection set provided in advance, the 
proposed algorithm yields a considerably accurate tracking 
performance in terms of sMOTSA [12], i.e., 1) 60% for 
MOTS20 Pedestrians, 2) 71.4% for KITTI Cars, and 3) 60.9%
for KITTI Pedestrians, respectively. In terms of the 
computation time, it took an average of 8.2 fps for the 
MOTS20 dataset and 12.4 fps for the KITTI dataset.

4.2. MOT16

We also measured the tracking results for MOT16 data. 
For the experiment, the same image sequences of MOTS
Challenge 2020 were used, where Yolov3 was used as a 
detector, and the given MOT16 training data were used for 
learning. In Table 1, the results of comparative experiments 
of the MOT16 test dataset show that SiameseRF is 
relatively faster than other MOT algorithms with similar 
results. In addition, compared to state-of-art online-based 
MOT methods, the proposed SiameseRF shows excellent 
results in terms of the overall performance.

TABLE I. RESULTS ON MOT16 TEST SET. BEST IN BOLD.

Method MOTA(%)↑ MOTP(%)↑ FAF↓ MT(%)↑ ML(%)↓ FP↓ FN↓ IDsw↓ Frag↓ Hz↑

O
ff

li
n

e LM_CNN[3] 67.4 79.1 1.7 38.2 19.2 10,109 48,435 931 1,034 1.7
KDNT [14] 68.2 79.4 1.9 41.0 19.0 11,479 45,605 933 1,093 0.7
LMP_p[15] 71.0 80.2 1.3 46.9 21.9 6,213 44,564 434 587 0.5
HDTR[17] 53.6 80.8 0.8 21.2 37.0 4,714 79,353 618 833 3.6

O
n

li
n

e

JCSTD [13] 47.4 74.4 1.4 14.4 36.4 8,076 86,638 1,266 2,697 8.8
Tracktor[16] 56.2 79.2 0.4 20.7 35.8 2,394 76,844 617 1,411 1.6
MLT[18] 52.8 76.1 0.9 21.1 42.4 5,362 80,444 299 702 5.9
DMAN[6] 46.1 73.8 1.3 17.4 42.7 7,909 89,874 532 1,616 0.3
RAR16[4] 63.0 78.8 2.3 39.9 22.1 13,663 53,248 482 1,251 1.6
Ours 57.9 79.3 1.4 28.5 22.1 8,196     66,538 2,051 2,549 7.8



5. Conclusion

In this paper, we proposed SiameseRF, which can be 
quickly learned and tested with a small number of 
parameters instead of a Siamese CNN, which is frequently 
used for a data association in MOT.  According to the nature 
of RF, the proposed SiameseRF uses K-fold validation 
instead of a back propagation, and thus the learning is fast 
and optimal tree rules can be generated. In addition, 
because the rules of the tree constituting the RF are shared 
with each RF, the memory requirement can be reduced 
during testing. It was confirmed experimentally that the 
proposed method can be used for online tracking in 
embedded systems with limited system resources. In a 
future study, we will consider how to reduce the system 
resources while maintaining the performance by distilling
the tree rules constituting SiameseRF.
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