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Robustness & Security in Machine Learning:
Towards Trustworthy Al

e Widespread deployment of ML
» future industry is fueled by data

» “standard” pipeline to train powerful ML models

e Security of ML-models
is multi-facetted:

» robustness to input variation
» preventing model “stealing”
>

Adversarial
+  Linkability Attack Perturbations

 Membership Inference
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Overview

e Robustness and Security of Deep Models
» Bright and Dark Side of Scene Context — NeurlPS'18, CVPR'19
» Disentangling Adversarial Robustness and Generalization — CVPR'19
» Reverse Engineering and Stealing Deep Models — ICLR'18, CVPR'19, ICLR'20
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Adversarial Scene Editing:

Automatic Object Removal from Weak Supervision
@ NeurlPS 2018

Not Using the Car to See the Sidewalk: Quantifying and Controlling
the Effects of Context in Classification and Segmentation

@ CVPR 2019
£
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Motivation: The Bright and the Dark Side of Scene Context

e Current models heavily rely on scene context:

» Original image with
cars on the left side:

Sidewalk 4/

original (Z) Upernet

» Same image
without those cars:
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Question: How Dependent are Current Models on Scene Context?

e Here

» we look at a particular aspect of context :
co-occurring objects

e (oals:

» quantify context sensitivity of classification and
segmentation using object removal [NeurlPS’18]

» object removal based data augmentation
for better performance
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-
[Shetty, Fritz, Schiele, NeurlPS'18]

Qualitative Results - COCO Dataset

Input
image
M-
RCCN
based - n
o ' -
person tv airplane  person person

Bright and Dark Sides of Computer Vision and Machine Learning | Bernt Schiele 7




Automated Testing Framework

Original
e |dea: test image

» create multiple versions of the input image with
one object removed in each

Automatic
object remover

e Removal approach: [Shetty, Fritz, Schiele, NeurlPS'18]

» use ground truth masks + in-painter trained for
object removal

e Each image presents new context in the

_.

“neighborhood” of the original test image. . T VU
9 9 9 Train \ Target / \ Target / ... \ r
\ Model / \ Model / \ Model /
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Data ‘_ Verify
augmentation Consistency

fz{ ini p il Bright and Dark Sides of Computer Vision and Machine Learning | Bernt Schiele 8



Example Result:

e Here:

> Object =Keyboard — Qbject without Context  Context without Object
» Context = Monitors _

Original
Regular S (keyboard) = 1.99¢ | ey
Ours S (keyboard) = 3.40 — S (keyboard) = 1.39
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-
Effect of Data Augmentation on Robustness of
Different Classes in Classification

e (Observations:

» many well-performing classes are not
robust to scene context changes
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e Example:
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» training with data augmentation reduces
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Take Home Message - Towards more Robust Models

The bright and dark sides of scene context
>

scene context helps to achieve better performance - however current models are
too dependent on scene context

Proposed new testing framework
>

automatically generate diverse set of scene context (via object removal)
>

reveals weakness of current models

Proposed new data augmentation framework

» allows to overcome some of the context dependencies

More work required !
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Overview

e Robustness and Security of Deep Models
>
» Disentangling Adversarial Robustness and Generalization — CVPR'19
>

f ini p il Bright and Dark Sides of Computer Vision and Machine Learning | Bernt Schiele

16



N :
A ' l I I I max planck institut Saarland Informatics
ke h J informatik Campus
qY

Disentangling
Adversarial Robustness and Generalization

@ CVPR 2019
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Adversarial Examples

17 C

Original Images Perturbation Perturbed Image
Wy 2y 9 anay’ (%002 —0.09) 9%, '3, 8 and 6"
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Sacrifice Robustness for Accuracy?

4.0E-02
ResNet-v2-50
ResNet-v2-101 .
3.5E-02 - ResNet-v2-152 AlexNet VGG 19
c Inception-v1 X
o ) Inception-v2
ﬁ 3.0E-02 1 Inception-v3
B Inception-v4
2L 55E02 'Vnézp;:"'nemewz VGG 16 _ Number of Parameters
o VGG 19 Inception-ResNet-v2
’ : e 1M

8 ) MobileNet-0.25-128
= 2.0E-02 1 MobileNet-0.50-160 75 M
3 MobileNet-1.0-224
© 1.5E-02 4 DenseNet-121-k32 50 M
U : DenseNet-169-k32
) ! DenseNet-161-k48
2 1.0E-021% (e MobileNet-0.25-128 NASNet
o
= 5 0e03- 7 R )

0.0E+400 T T T T
0.2 0.4 0.6 0.8 1.0

Top-1 Accuracy

Hypothesis: Accuracy needs to be sacrified for robustness.

Su et al. Is Robustness the Cost of Accuracy? — A Comprehensive Study on the
Robustness of 18 Deep Image Classification Models. arXiv:1808.01688.
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Distinction Required Between...

* “regular” adversarial examples

» no constraints to be
on or off the class manifold

e “on-manifold” adversarial examples

» adversarial example has to
be a correct instance of the class

e “invalid” adversarial examples

» example is a “proper” instance of another class
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Decision
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Class Manifold “5”
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Data and Class Manifolds in the Following

* New synthetic dataset:

FONTS: synthetic data generation with known class manifold

» known manifold with perfect, deterministic generator

» font and character are discrete; affine transformation continuous

character

T
font —

affine
transformation

/

deterministic
decoder
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Adversarial Examples:
Regular (Off-Manifold) Adversarial Examples

I
0 +0.04x ™
- P

Image x Perturbation 4

Obtain a perturbation 4 for image x with true label y:

»x—— Classifier
argmax L(f(x + d;w),y)
5

Training Loss J s.t. [|0]], < e

‘\ Perceptual Similarity
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Adversarial Examples:
Regular (Off-Manifold) vs. On-Manifold

T
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Image x Perturbation & "

dec(z + ()
Obtain a perturbation 4 for image x with true label y: ‘ ‘
Obtain a perturbation ( for latent code z:
»x—— Classifier Classifier = 4, Decoder
argmax L(f(x +8;w),5) argmax £(f(dec(z + C):w),y)
. ¢
Training Loss J st. |0, < e Training Loss \—/‘ s.t. ||Cllp < €
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Regular (Off-Manifold) vs. On-Manifold

FONTS
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Main Findings:

e “Regular” adversarial examples leave the manifold

manifold
learned
(VAE)

manifold
known
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“Regular”’ Robustness and Generalization are NOT Contradicting

FONTS FONTS FONTS
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—+— On-Learned-Manifold Adversarial Training
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Take Home Message - Adversarial Robustness vs. Generalization

e Adversarial robustness not well understood

» distinction between “regular”, “on-manifold”,
and “invalid” adversarial examples

regular

» currently very active area adversarial example
— not all work is great :) Dridars

on-manifold
(Classifier’s adversarial example
Decision
Boundary

» “regular” adversarial examples
leave the manifold (= “off-manifold”)

invalid

adversarial example
Class Manifold “5” True

e’
[H-
- but sample efficiency is an issue Decision

Boundary Class Manifold “6”

» “regular” robustness and
generalization are not contradicting

» “on-manifold” adversarial examples exist

- “on-manifold” robustness is generalization
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Final Words...

e Embrace the “Bright and the Dark Side”
» let’s better understand and control robustness & security (& privacy)

e \We need a lot more research in the area
» keep knowledge in the public domain to build trust

e Responsibility in education
» educate students about both opportunities and potential dangers
» distinguish between “what can be done” and “what should be done”
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