

The Bright and Dark Sides of Computer Vision and Machine Learning Challenges and Opportunities for Robustness and Security

Bernt Schiele Max Planck Institute for Informatics & Saarland University, Saarland Informatics Campus Saarbrücken

Robustness & Security in Machine Learning: Towards Trustworthy AI

Overview

- Robustness and Security of Deep Models
 - **Bright** and **Dark** Side of **Scene Context** NeurIPS'18, CVPR'19
 - Disentangling Adversarial Robustness and Generalization CVPR'19
 - **Reverse Engineering** and **Stealing** Deep Models ICLR'18, CVPR'19, ICLR'20

Adversarial Scene Editing: Automatic Object Removal from Weak Supervision

Not Using the Car to See the Sidewalk: Quantifying and Controlling the Effects of Context in Classification and Segmentation @ CVPR 2019

Rakshith Shetty MPI Informatics

Mario Fritz CISPA Helmholtz

Bernt Schiele MPI Informatics

Motivation: The Bright and the Dark Side of Scene Context

• Current models heavily rely on scene context:

 Original image with cars on the left side:

 Same image without those cars:

Question: How Dependent are Current Models on Scene Context?

- Here
 - we look at a particular aspect of context : co-occurring objects
- Goals:
 - quantify context sensitivity of classification and segmentation using object removal [NeurIPS'18]
 - object removal based data augmentation for better performance

[Shetty, Fritz, Schiele, NeurIPS'18]

Qualitative Results - COCO Dataset

(empn

Automated Testing Framework

- Idea:
 - create multiple versions of the input image with one object removed in each
- Removal approach: [Shetty, Fritz, Schiele, NeurIPS'18]
 - use ground truth masks + in-painter trained for object removal
- Each image presents new context in the "neighborhood" of the original test image.

Example Result:

- Here:
 - Object = Keyboard
 - Context = Monitors

Effect of Data Augmentation on Robustness of Different Classes in Classification

- Observations:
 - many well-performing classes are not robust to scene context changes
- Example:
 - mouse AP = 0.84, violations = 90%
 - training with data augmentation reduces this (90% drops to 36%)
- Improves performance on out of context dataset (Unrel)

Take Home Message - Towards more Robust Models

- The bright and dark sides of scene context
 - scene context helps to achieve better performance however current models are too dependent on scene context
- Proposed **new testing framework**
 - automatically generate diverse set of scene context (via object removal)
 - reveals weakness of current models
- Proposed new data augmentation framework
 - allows to overcome some of the context dependencies
- More work required !

Overview

- Robustness and Security of Deep Models
 - ▶ Bright and Dark Side of Scene Context NeurIPS'18, CVPR'19
 - Disentangling Adversarial Robustness and Generalization CVPR'19
 - **Reverse Engineering** and **Stealing** Deep Models ICLR'18, CVPR'19, ICLR'20

Disentangling Adversarial Robustness and Generalization

@ CVPR 2019

David Stutz MPI Informatics

Bernt Schiele MPI Informatics

Adversarial Examples

Original Images Perturbation Perturbed Image "0", "2", "9" and "0" "9", "3", "8" and "6" $(\times 0.02 - 0.09)$

Sacrifice Robustness for Accuracy?

Hypothesis: Accuracy needs to be sacrified for robustness.

Su et al. Is Robustness the Cost of Accuracy? – A Comprehensive Study on the Robustness of 18 Deep Image Classification Models. arXiv:1808.01688.

Distinction Required Between...

- "regular" adversarial examples
 - no constraints to be on or off the class manifold
- "on-manifold" adversarial examples
 - adversarial example has to be a correct instance of the class
- "invalid" adversarial examples
 - example is a "proper" instance of another class

Data and Class Manifolds in the Following

- New synthetic dataset: FONTS: synthetic data generation with known class manifold
 - known manifold with perfect, deterministic generator
 - font and character are discrete; affine transformation continuous

Adversarial Examples: Regular (Off-Manifold) Adversarial Examples

Obtain a perturbation δ for image *x* with true label *y*:

Adversarial Examples: Regular (Off-Manifold) vs. On-Manifold

Regular (Off-Manifold) vs. On-Manifold

Main Findings:

• "Regular" adversarial examples leave the manifold

"Regular" Robustness and Generalization are NOT Contradicting

Take Home Message - Adversarial Robustness vs. Generalization

• Adversarial robustness not well understood

- distinction between "regular", "on-manifold", and "invalid" adversarial examples
- currently very active area
 not all work is great :)
- "regular" adversarial examples
 leave the manifold (= "off-manifold")
- "regular" robustness and generalization are not contradicting
 - but sample efficiency is an issue
- "on-manifold" adversarial examples exist
 - "on-manifold" robustness is generalization

Final Words...

- Embrace the "Bright and the Dark Side"
 - let's better understand and control robustness & security (& privacy)
- We need a lot more research in the area
 - keep knowledge in the public domain to build trust
- Responsibility in education
 - educate students about both opportunities and potential dangers
 - distinguish between "what can be done" and "what should be done"

