Using Video to Learn about Visual Correspondence

Alexei (Alyosha) Efros UC Berkeley

target

Why video?

1. Richer signal

Jackson Pollock Number 21 (detail)

"It irritated him that the "dog" of 3:14 in the afternoon, seen in profile, should be indicated by the same noun as the dog of 3:15, seen frontally..."

-- from *Funes the Memorious*

2. Correspondences

Jorge Luis Borges

Continuity crucial for visual development

Wood 2013, 2016, 2018

3. Ordering?

"Time is what keeps everything from happening at once."

-- Ray Cummings (1919)

larverst of or an an inclusion of a state at

Canadity connections an arreful to ABOX CYNDIAL XUN DEMANDED INF. рюзния

второй нелекинай

Financers of parameters equidant test, which are built and ROMANN STREET CODESS. DESCRIPTION.

Video in the "old days"

Space-time XYT volumes

Clean and beautiful story

Recognition with XYT volumes

"braided patterns" of cyclic motion [Niyogi & Adelson, 1994]

histograms of spatio-temporal gradients [Zelnik-Manor & Irani, 2001]

3D Convolutions [Tran et al, 2015]

XYT segmentation [Shi & Malik, 98]

time->

Video Textures

Arno Schödl Richard Szeliski David Salesin Irfan Essa

SIGGRAPH 2000

Problem statement

video clip

video texture

Text Synthesis

- [Shannon,'48] proposed a way to generate English-looking text using N-grams:
 - Assume a generalized Markov model
 - Use a large text to compute prob. distributions of each letter given N-1 previous letters
 - Starting from a seed repeatedly sample this
 Markov chain to generate new letters
 - Also works for whole words

WE NEED TO EAT CAKE

Texture Synthesis: Markov chain on pixels

Synthesizing a pixel

Efros & Leung, ICCV 1999

non-parametric sampling

Video Textures: Markov chain on frames

• How do we find good transitions?

Finding good transitions

Compute L₂ distance $D_{i, j}$ between all frames

Similar frames make good transitions

• Transition from i to j if successor of i is similar to j

Transition costs

• Cost function: $C_{i \rightarrow j} = D_{i+1, j}$

Preserving dynamics

Preserving dynamics

Preserving dynamics

• Cost for transition $i \rightarrow j$ • $C_{i \rightarrow j} = \sum_{k = -N}^{N-1} \sum_{k = -N}^$

• $C_{i \rightarrow j} = \sum_{k=1}^{N-1} w_k D_{i+k+1, j+k}$

Preserving dynamics – effect

Cost for transition $i \rightarrow j$

• $C_{i \rightarrow j} = \sum_{k=1}^{N-1} w_k D_{i+k+1, j+k}$ k = -N

User-controlled video textures

Slow

User selects target frame range

fast

Video sprite extraction

blue screen matting and velocity estimation

• Augmented transition cost:

Animation $C_{i \rightarrow j} = \alpha C_{i \rightarrow j} + \beta \text{ angle } \langle c_{i \rightarrow j} \rangle$ Similarity term Control term

Video sprite control

vector to mouse pointer velocity vector

Interactive fish

Trouble with XYT volumes

- Time is not just "another dimension" – Very sparse sampling in t
- Implicit correspondence assumed $-e.g.(x,y,t) \rightarrow (x,y,t+1)$ (fixed camera) or other simple models

Explicit Correspondences

Optical Flow

- + dense correspondences
 short-range (2 frames)
- local

Object Tacking

- + longer-range & mid-level
- one object at a time
- not stable
 - "time to failure" metric

- Enter: learning
- detect in all other frames
- Now fancy off-the-shelf detectors
- But no explicit correspondence

"Strike a Pose" [Ramanan, Forsyth, Zisserman, 2005]

• Train simple person detector on one frame, then

Data association

• Temporal correspondence across detections - Step 1: detect objects (requires supervision) (but divorced from pixels)

- Step 2: find correspondences across detections

Using Time as Supervision

Temporal Self-supervised Feature Learning tasks

Inputs

Outputs

aligned vs. not-aligned	
3D Convolution	
1D Convolution	
1D Convolution	
	-

Predict Audio-visual Shifts [Owens & Efros, 2018]

Predict Arrow of Time [Misra et al, 2016; Wei et al, 2018]

Predict Color in Time [Vondrick et al, 2018]

Using Tracking to Learn Features

Tracking → Similarity [Wang et al, 2015; Pathak et al, 2017]

Tracking → Similarity [Wang et al, 2015; Pathak et al, 2017]

Limited by Off-the-shelf Trackers

CNN

Using Tracking to Learn Features

Similarity requires tracking

Tracking requires similarity

Let's jointly learn both!

Learning Correspondence from the Cycle-consistency of Time

Xiaolong Wang

Allan Jabri CVPR 2019

Alexei Efros

Learning to Track

F: a deep tracker

Supervision: Cycle-Consistency in Time

Track backwards

Track forwards, back to the future

Supervision: Cycle-Consistency in Time

Backpropagation through time along the cycle

Visualization of Training

Limitations

- One patch at a time
- Winner-takes-all tracking
- Complex tracker (Spatial Transformer)
- Does not improve with longer cycles (6+ frames)
- Does not improve with more training data
- Fresh new work addresses these...

Space-Time Correspondence as a Contrastive Random Walk

(on ArXiv next week!)

Allan Jabri, Andrew Owens, Alexei A. Efros

Aim:

Learn a similarity representation for correspondence from unlabeled video

Focus: Simplicity and Scalability

Supervised correspondences

Supervised correspondences

Latent correspondences

Palindrome sequence

<u>Self-supervised</u> correspondences

t

Contrastive Random Walk

Video as a Graph

 I_t

Pixels

Nodes

 \mathbf{q}_t

Video as a Graph

q_t

 \mathbf{q}_{t+1}

$$A_{ij} = \frac{e^{d_{\phi}(q_t^i, q_{t+1}^j)/\tau}}{\sum_l e^{d_{\phi}(q_t^i, q_{t+1}^l)/\tau}}$$
$$= P(X_{t+1} = j | X_t = i)$$

where $d_{\phi}(x, y) = \phi(x)^{\mathsf{T}} \phi(y)$

 X_t is the position of walker at time t

Correspondence as a Random Walk

Learn embedding ϕ = Fitting transition probabilities

One Step Contrastive Learning

Maximize

$P(X_{t+1} = target | X_t = query)$

One Step Contrastive Learning

Maximize

 $P(X_{t+1} = pos | X_t = query) = \frac{e^{\phi(query)^{\mathsf{T}}\phi(pos)}}{\sum_l e^{\phi(query)^{\mathsf{T}}\phi(neg_l)}}$

 l_2 -normalized Embedding

Contrastive Learning

with cross entropy loss

Dosovitsky et al (2014)

Isola et al (2015)

Tian et al (2019)

Wu et al (2018)

van den Oord et al (2019)

target

k-step Transition Matrix

$$\overline{A}_{t}^{t+k} = \prod_{i=0}^{k-1} A_{t+i}^{t+i+1} \qquad \text{Sums ove}$$
intermediation
$$= P(X_{t+k}|X_{t})$$

target

Easy case:

Correspondence is obvious

target

Harder case:

Ambiguity

Considers multiple paths

Supervised \rightarrow Self-Supervised

Train on Palindromes

$$\mathcal{L}_{cyc}^k = \mathcal{L}_{CE}(\bar{A}_t^{t+k}\bar{A}_{t+k}^t,$$

Contrastive learning with latent correspondences

Simple

Algorithm 1 Pseudocode in a PyTorch-like style.

```
# load a minibatch x with B sequences
 # B x C x T x H x W -> B x C x T x P x h x w
 v = 12\_norm(resnet(x)) \# Embed patches (B x C x T x P)
 # Transitions from t to t+1 (B \times T \times P \times P)
 A = einsum("bcti,bctj->bcij", v[:,:,:-1], v[:,:,1:])
 # Transition similarities for palindrome graph
AA = cat((A, A[:,::-1].transpose(-1,-2), 1)
  # Perform random walk
for t in range(2*T):
  At = bmm(softmax(dropedge(AA[:,t]),dim=-1), At)
  # Target is the original node
  loss = cross_ent_loss(At, labels=[range(P)]*B)
```

Evaluation

Semantic Part Propagation

Pose Propagation 15 Keypoints

Use ϕ for

Label Propagation

Object Propagation

20 Parts

VIP Benchmark

JHMDB Benchmark

1-4 Objects

DAVIS Benchmark

Label Propagation

Using more context, i.e. last *m* frames

Wang et al. (2019) Li et al. (2019) Lai et al. (2019

Semantic Part Propagation

on Video Instance Parsing (VIP) dataset

Pose Tracking

on JHMDB

"Common Fate" by Edge Dropout

t

t + k

Higher-level correspondence

by modeling correlated paths

Laws of organization in perceptual forms. Wehrtheimer (1938)

Edge Dropout

Video Object Propagation on DAVIS dataset

Ours

Ours

Ours

Still Frame Comparison

UVC [Li et al., 2019]

Ours

Quantitative Comparison: Self-Supervised State-of-the-Art

Quantitative Comparison: Semantic Part Propagation

Quantitative Comparison: Pose Propagation

Sun et al, ICML 2020

(Self-supervised Test-time Training)

Pre-Train \rightarrow Self-sup Train on X \rightarrow Test on X

So far...

Pre-Train → Test on Example X

(No Adaptation)

Test-time Training (DAVIS)

Path Length at Training

Learning Curve

DAVIS J&F Mean

Conclusions

- We proposed a simple and effective formulation for learning correspondence in a scalable way from unlabeled video.
- The method outperforms self-supervised state of the art methods despite being more simple.