Using Video to Learn about
Visual Correspondence
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Why video?



1. Richer signal

Jackson Pollock
s Number 21 (detail)




2. Correspondences

“It irritated him that the “dog” of 3:14 In the
afternoon, seen In profile, should be indicated
by the same noun as the dog of 3:15, seen
frontally...”

-- from Funes the Memorious

Jorge Luis Borges







Continuity crucial for visual development

Object 1: Temporally Smooth

Object 1: Temporally Non-Smooth

Wood 2013, 2016, 2018






3. Ordering?

“Time 1s what keeps everything from
happening at once.”
-- Ray Cummings (1919)




V1deo In the “old days”




Space-time XYT volumes

Clean and beautiful story



Recognition with XYT volumes

histograms of spatio-temporal gradients
[Zelnik-Manor & Irani, 2001]

“braided patterns” of cyclic motion 3D Convolutions
INIyogi & Adelson, 1994} [Tran et al, 2015]



XYT segmentation [Shi & Malik, 98]




V1deo Textures

Arno Schodl
Richard Szeliski
David Salesin
Irfan Essa

SIGGRAPH 2000



Problem statement
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Text Synthesis

e |Shannon,’48] proposed a way to generate
English-looking text using N-grams:
— Assume a generalized Markov model

— Use a large text to compute prob. distributions of
each letter given N-1 previous letters

— Starting from a seed repeatedly sample this
Markov chain to generate new letters

— Also works for whole words

WE NEED TO EAT CAKE



Texture Synthesis: Markov chain on pixels

non-parametric
sampling

= <)

Synthesizing a pixel Input image

Efros & Leung, ICCV 1999



Video Textures: Markov chain on frames

P

 How do we find good transitions?



Finding good transitions

» Compute L, distance D; ; between all frames

VS. - frame |

Similar frames make good transitions



Transition costs

e Transition from 1 to J if successor of 1 I1s similar to |
» Cost function: C;_,; = Dy, ;




Preserving dynamics




Preserving dynamics

SRS




Preserving dynamics

o Cost for transition i—j
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Preserving dynamics — effect

o Cost for transition i—j

— N-1
* CiniTy WicDinra, juk
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User-controlled video textures

slow variable

User selects target frame range



Video sprite extraction
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Video sprite control

e Augmented transition cost:

Animation

C., =aC,_;+pangle<)

T '—r' velocity vector

Similarity term  Control term



Interactive fish

2




Trouble with XYT volumes

e TIme IS not just “another dimension”
— Very sparse sampling in t

e |mplicit correspondence assumed
- e.g. (x,y,t) — (x,y,t+1) (fixed camera)
— or other simple models




Explicit Correspondences

Optlcal Flow Object Tackmg

+ dense correspondences  + longer-range & mid-level
- short-range (2 frames) - 0nhe object at a time

- |local - not stable
- “time to fatlure” metric



Tracking-by-Detection

“Strike a Pose” [Ramanan, Forsyth, Zisserman, 2005}

e Enter: learning

e Train simple person detector on one frame, then
detect in all other frames

* Now fancy off-the-shelf detectors
 But no explicit correspondence



Data assoclation

e Temporal correspondence across detections

— Step 1: detect objects (requires supervision)

— Step 2: find correspondences across detections
(but divorced from pixels)




Using Time as Supervision




Temporal Selt-supervised
Feature Learning tasks

Inputs

Predict Pixels in Time Predict rro of Time
[Mathieu et al, 2015] [Misra et al 2016 Weli et al 2018]

Predict Audlo visual Shifts Predict Color in Time
[Owens & Efros, 2018] [Vondrick et al, 2018]



Using Tracking to Learn Features

Tracking — Similarity
[Wang et al, 2015; Pathak et al, 2017]



Using Tracking to Learn Features

Limited by Off-the-shelf Trackers

Tracking — Similarity
[Wang et al, 2015; Pathak et al, 2017]



Similarity requires tracking Tracking requires similarity

Let’s joity learn both!
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Learning Correspondence from
the Cycle-consistency of Time

Xiaolong Wan Allan Jabri  Alexei Efros
CVPR 2019



Learning to Track

F: a deep tracker




Supervision: Cycle-Consistency in Time

Track backwards
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Track torwards, back to the future




Supervision: Cycle-Consistency in Time
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Backpropagation through time along the cycle
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Visualization of Training







e

[Limitations

1

t-

* One patch at a time
* Winner-takes-all tracking
» Complex tracker (Spatial Transformer)

* Does not improve with longer cycles
(6+ frames)

* Does not improve with more training -
data Epochs (Kinetics)

e Fresh new work addresses these...

Wang et al




Space-Time Correspondence
as a Contrastive Random Walk

o © e © 8
o -
O . | -
00®® e O
o © o © =
>t

@ negatives

Allan Jabri, Andrew Owens, Alexel A. Efros

(on ArXiv next week!)



Alm:
Learn a similarity representation for correspondence

from unlabeled video

FOCuUus:

Simplicity and Scalabllity



Supervised correspondences
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Supervised correspondences
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Latent correspondences




Palindrome sequence

. RE-REZR 2] [1




Self-supervised correspondences




Contrastive Random Walk

query O target @ negatives



Video as a Graph

Pixels

}

Nodes



Video as a Graph
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Correspondence as a Random Walk

Learn embedding ¢ = Fitting transition probabilities



One Step Contrastive Learning

Maximize
O QO target
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One Step Contrastive Learning

Maximize

O positive o® (query)T ¢ (pos)
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Contrastive Learning

with cross entropy loss

Dosovitsky et al (2014)
Isola et al (2015)

Tian et al (2019)

Wu et al (2018)

lz-normalized Embedding van den Oord et al (2019)




Chaining Correspondences

k-step Transition Matrix

—l+k  at+i+1 Sums over
Ay = ] Ay - .
i=0 iIntermediate
time steps

= P(X¢4+x|Xe)



Chaining Correspondences

O O @ @ target
O Aﬁ."”/ﬁ 0 O O Easy case:
query """f/ﬁ O O ® Correspondence Is obvious
O O O O
O O O O

t t + k



Chaining Correspondences

o target

Harder case:

query Ambiguity

Considers multiple paths

t t + k



Chaining Correspondences

Needs supervision!




Supervised — Self-Supervised
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Contrastive learning
with latent correspondences



Simple

Algorithm 1 Pseudocode in a PyTorch-like style.

# load a minibatch x with B sequences
for x in loader:

# BxCxTxHxW->BxCxTxPxhzxw
Embed nodes x = unfold(x, (patch_size, patch_size))
x = spatial_jitter(x)
v = 12_norm(resnet(x)) # Embed patches (B x C x T x P)
# Transitions from t to t+1 (B x T x P x P)
A = einsum("bcti,bctj->bcij", vl:,:,:-1], v[:,:,1:])
A /= temperature

Construct graph

# Transition similarities for palindrome graph
AA = cat((A, A[:,::-1].transpose(-1,-2), 1)
At = eye(P)

# Perform random walk

Walk on graph for t in range(2%T):
At = bmm(softmax(dropedge(AA[:,t]),dim=-1), At)

# Target 1s the original node
loss = cross_ent_loss(At, labels=[range(P)]*B)
loss.backward()




Evaluation

Semantic Part Propagation 20 Parts VIP Benchmark
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Label Propagation Wang et al. (2019)
Li et al. (2019)

Lal et al. (2019

0 t—m t—m+1 f

Using more context, I.e. last m frames



Semantic Part Propagation

on Video Instance Parsing (VIP) dataset


















Pose Tracking

on JHMDB



UVC [Li et al. 2019] Ours







UVC [Li et al. 2019] Ours







UVC [Li et al. 2019] Ours







UVC [Li et al. 2019] Ours







“Common Fate” by Edge Dropout
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Laws of organization in perceptual forms.
Wehrtheimer (1938)



Edge Dropout

68
DAVIS
66
J&F Mean
64
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Edge Dropout Rate



Video Object Propagation

on DAVIS dataset



UVC [Li et al., 2019] ours









UVC [Li et al., 2019] ours









UVC [Li et al., 2019] ours









Still Frame Comparison

UVC [Li et al., 2019] ours



UVC [Li et al., 2019] ours









Quantitative Comparison: Self-Supervised State-of-the-Art
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TimeCycle: Wang et al. (2019)

UVC: Li et al. (2019) o |
CorrFlow: Lai et al. (2019) Based on Colorization Strong Image Representations
MAST: Lai et al. (2019)

VINCE: Gordon et al. (2020)
MoCo: He et al. (2019)



Quantitative Comparison: Semantic Part Propagation
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Quantitative Comparison: Pose Propagation
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So far...

Pre-Train — Test on Example X

(No Adaptation)

Pre-Train — Self-sup Train on X — Test on X

(Self-supervised Test-time Training)

Sun et al, ICML 2020
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Path Length at Training
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Learning Curve
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Conclusions

* \We proposed a simple and effective formulation for
learning correspondence In a scalable way from
unlabeled video.

* The method outperforms self-supervised state of the art
methods despite being more simple.
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