
— Technical Report —
Contrastive Instance Association for 4D Panoptic Segmentation

Rodrigo Marcuzzi Lucas Nunes Louis Wiesmann Ignacio Vizzo
Jens Behley Cyrill Stachniss

University of Bonn

Abstract

We propose a novel approach that builds on top of an
arbitrary single-scan panoptic segmentation network and
extends it to the temporal domain by associating instances
across time. We propose a contrastive aggregation net-
work that leverages the point-wise features from a panop-
tic network. It generates an embedding space in which
encodings of the same instance at different timesteps lie
close together and far from encodings belonging to other
instances. The training is inspired by contrastive learning
techniques for self-supervised metric-learning. Our associ-
ation module combines appearance and motion cues to as-
sociate instances across scans, allowing us to perform tem-
poral perception. We evaluate our proposed method on the
SemanticKITTI benchmark1 and achieve state-of-the-art re-
sults even without relying on pose information. We plan to
publish the source code of our approach.

1. Our Approach
Fig. 1 gives an overview of our approach. The first el-

ement is a frozen panoptic segmentation network to ob-
tain semantic predictions, instance predictions, and point-
wise features. Given a point cloud P = {pC

1 , . . . ,p
C
N}with

point coordinates pC
i ∈ R3, we apply the backbone B and

obtain point-wise semantic classes PS = {pS1 , . . . , pSN},
where pSi ∈ {1, . . . , nclasses} and point-wise instance IDs
PI = {pI1, . . . , pIN} with pIi ∈ N from the task specific
heads. From the feature extractor, we obtain the point-
wise features PF = {pF

1 , . . . ,p
F
N}, where pF

i ∈ RDB

with feature dimension DB . We use the ID of each
point to select for each instance j ∈ {1, . . . ,M}, its points
IPj = {pCi ∈ P | pIi = j} and its point-wise features IFj ,
which we use as input of our contrastive aggregation net-
work.

1.1. Contrastive Aggregation Network

Our contrastive aggregation network (CA-Net) generates
consistent appearance features over time for instance as-
sociations. Given the input points IPj and point-wise fea-

1See https://competitions.codalab.org/competitions/26369#results
with username rmarcuzzi.

tures IFj for all M instances in the current point cloud
P , the output of the network are instance-wise features
IF = {f1, . . . , fM}, fj ∈ RDA with feature dimension DA,
i.e., a single feature vector for each instance in the scan.

To learn from the features of the backbone as well as
from the shape of the instances, we first apply three con-
volutions. Then, a pooling layer computes a single instance
feature from all the features belonging to the instance points
IPj . This is followed by two linear blocks and a projection
head to obtain the final instance-wise feature fj.

1.2. Association Module

After computing instance-wise embeddings IF using our
CA-Net, we maintain consistent instance-wise IDs by asso-
ciating the instances {I1 . . . IM} in the current scan with the
corresponding instances {I1 . . . IK} in the previous ones.
We compute a cost matrix C ∈ RM×K between all M in-
stances in the current scan and all K instances identified
in previous scans, by means of the similarity between their
features and determine the associations using the Hungarian
method [11].

To handle new targets, we add detected objects in the
current frame only if the feature similarity with any of the
already active instances is lower than a threshold Tnew . For
re-identification of objects, we store the deactivated trajec-
tories for a fixed number of scans nold and compare with the
deactivated targets. We re-identify objects if the similarity
is higher than a threshold Told .

To add information about the movement of the targets,
we use a constant velocity motion model independent of the
sensor ego-motion. Each entry of C is an association cost
between the new instance m and the previous instance k:

Cm,k = αf · (1− sim(fm, fk)) + αd · ‖cm, ck‖, (1)

where fm is the feature and cm ∈ R3 the center coordi-
nates of instance m, sim(·) is the cosine similarity function
sim(fm,fk) = f>mfk/‖fm,fk‖, and αf , αd ∈ R are
importance weights for the individual feature and distance
costs. For re-identification, the motion model is applied
continuously also to the deactivated targets (not associated
with any other instance) to estimate their position in case of
occlussions or missing detections.

semantic predictions

temporally
consistent

IDspanoptic backbone B

se
m

 c
la

ss
es

in
st

an
ce

 ID
s

se
m

an
tic

 h
ea

d
in

st
an

ce
 h

ea
d

po
in

t-
w

is
e

fe
at

ur
es

association
module

fe
at

ur
es

in
s

fe
at

co
nv

 b
lo

ck

co
nv

 b
lo

ck

co
nv

 b
lo

ck

av
g

po
ol

lin
 b

lo
ck

lin
 b

lo
ck

pr
oj

 h
ea

d

po
in

ts

CA-Netinput scan segmented scan

Figure 1: Overview of our method. Given the current 3D LiDAR scan, we use a panoptic segmentation backbone B to obtain semantic
classes, instance IDs, and features for each point. We select the points and features for each instance using the IDs and input them into the
CA-Net to obtain instance-wise features. These features are used to perform instance associations using our association module to assign
temporally consistent instance IDs. Combining this with the semantic predictions, we obtain 4D panoptic segmentation.

1.3. Input Features

The point-wise featuresPF from the panoptic segmenta-
tion backbone are used by the task-specific heads to perform
segmentation of the points. They are similar for instances
belonging to the same semantic class and thus cannot be di-
rectly used to perform instance associations for objects of
the same semantic class.

Inspired by the recent findings in natural language pro-
cessing [13], we seek to enhance the point-wise features
with spatial knowledge using positional encodings . We
compute for each instance point pl ∈ IPj a fixed positional
encoding el ∈ RDB . We follow [9] and use the point co-
ordinates pc

l ∈ R3 to generate an encoding with the same
dimension as the point-wise features and add them together.

Due to their similarity, using the point-wise features as
the only input to our CA-Net does not provide enough in-
formation to learn distinct instance-wise features to do the
associations. We add positional encodings as extra infor-
mation to exploit the spatial relations between the instances
and create more distinct features.

1.4. Instance Point Extraction

As the input of the CA-Net, we select from all the points
and features (P, PF) in the current point cloud P , the ones
belonging to the different instances (IP , IF). During train-
ing, we rely on the instance labels P̂I to group the points
into instances and select their corresponding features. At
inference time the instance points are selected using the pre-
dictions P I from the backbone. These predictions are not
perfect due to problems like wrong semantic predictions or
errors in the clustering algorithm used to separate instances
in the backbone after the instance head. The inputs for the
CA-Net are then different at train and test time.

We can circumvent this by applying augmentations to
the point instances to emulate what may happen during in-
ference.

The problem of splitted instances is due to the imper-
fect clustering applied in the backbone to obtain the instance
predictions. It can wrongly cluster the points into instances,

dividing one instance into two smaller ones, as shown in
Fig. 2. We use the so-called split augmentation to separate
the points on each side of a plane to split the instance. We
sample a random normal vector n ∈ R3 and a random in-
stance point pl ∈ IPj to generate a randomly oriented plane
and compute the point to plane distance d = n>pl. The re-
maining points after the augmentation are the query points
q which lie in the half-space of the normal:

Iaug =
{
ql ∈ IPj | n>qC

l − d > 0
}
, (2)

which leads to splitted instances.
The incomplete instances are caused by the wrong se-

mantic class predicted for some instance points at the bor-
ders. Their semantic class assigns them to the background,
and they are not considered as part of the instance, as can be
seen in Fig. 2. We use the so-called contour augmentation
to discard points in the contour of the instances. We first
normalize the point coordinates to the range [−1, 1], gener-
ate a random maximum coordinate value γ ∈ R and only
keep the points with smaller absolute coordinates, i.e.,

Iaug =
{
pl ∈ IPj | |xl| < γ ∧ |yl| < γ ∧ |zl| < γ

}
, (3)

where xl, yl, zl are the coordinate components of lth point.
We illustrate our augmentations applied to instances in

Fig. 2. As an extra augmentation, we randomly drop
cuboids of points belonging to the instance [14].

1.5. Pose Information

Both, the positional encoding and the constant velocity
motion model rely on the positions of the instances in the
current scan, i.e., positions in a local coordinates frame. As
these are local coordinates, the positions are not consistent
for scans at different timesteps and the ego-motion of the
sensor must be compensated.

By adding the sensor pose estimates using a SLAM ap-
proach [3], we can improve the instance associations by
leveraging this extra information. We use the pose estimates
to transform the positions of previously observed objects

incomplete

splitted

perfect

instance predictions

split augmentation contour augmentation

Figure 2: Problems in the instance predictions using the back-
bone. Incomplete, splitted and perfect instance (top). Proposed
split augmentation (left) and countour augmentation (right). The
gray points are discarded.

into the current local coordinates frame. This way, objects
have consistent positions over time and the constant veloc-
ity motion model only predicts the motion of the other ob-
jects as the ego-motion is compensated. We recompute the
features of the previously observed instances by updating
their positional encoding using the consistent positions in
the current coordinate frame.

1.6. Contrastive Training

For the multi-object tracking problem, we use the in-
stance head to get the predicted instances {I1, . . . , IM} in
the current point cloud P and perform tracking by associat-
ing them with previous instances across time.

Several works use metric learning to learn instance rep-
resentations by comparing the embedding of one anchor ob-
ject with one or a few positive and negative samples. At the
same time, contrastive learning is used in self-supervised
representation learning [12] to train a network, which is
later fine-tuned on a downstream task. The main idea of
those approaches is to use data augmentation to generate
two versions of one anchor sample and train the network to
learn to pull together the positive samples in the embedding
space and push them apart from many negative samples.

Given a batch of B samples, the loss function seeks
to discriminate between the positive pairs (augmented ver-
sions of the anchor) and the negatives (augmented versions
of different anchors). In the self-supervised contrastive loss
InfoNCE [12], an encoder is used to obtain the feature vec-
tors zj for each augmented sample j. Let r(j) be the index
of the other augmented sample from the same anchor j and
A(j) the set of all indices in the batch except j. Then, the
loss function takes the form:

Lself = −
∑
j∈B

log
exp (z>j zr(j)/τ)∑

a∈A(j)

exp (z>j za/τ)
, (4)

where τ is a temperature parameter.

In our setup, the samples are all instances in the batch
and their corresponding feature vectors {f1, . . . , fb} are
computed using our CA-Net. We want to enforce that fea-
tures of the same instance are consistent. The appearance
of the instances changes over time as the viewpoint changes
due to the instance and the sensor’s motion. As the samples
for the same instance are different across time but depict the
same object, we can use this as an inherent augmentation.
To obtain positive samples, we select the same instance in
different scans over time instead of using one instance as an
anchor and generating augmented versions of it.

The appearance can, however, change significantly in
scans temporally far from each other. We define a temporal
window of scans ∆ ∈ N, in which we consider instances
similar enough to perform the associations and from which
the positive samples are drawn. As ∆ is the number of scans
from which we extract instances, it is the maximum number
of positive samples to consider in the loss function. Using
the labels, we select a set of positive samples P (j) consid-
ering the instances with the same ID in consecutive scans in
the temporal window. As negative samples, we use all other
instances in the batch. To learn from many positive in ad-
dition to the many negative samples, we use the supervised
contrastive loss [10]:

Lsup = −
∑
j∈B

1

|P (j)|
∑

p∈P (j)

log
exp (f>j fp/τ)∑

a∈A(j)

exp (f>j fa/τ)
, (5)

where fj , fp, fa ∈ RDA are respectively the feature for the
anchor instance, the feature for the positive samples and,
the feature for all the other instances in the batch.

1.7. Implementation Details

We build on top of DS-Net [7] as panoptic segmentation
backbone. The feature extractor provides point-wise feature
vectors pF

i ∈ RDB , DB = 128. For the instance clustering,
we use mean shift [5].

For our CA-Net, the convolutional blocks are 3D sparse
convolutions [4], followed by a batch normalization (BN)
layer [8] and leaky ReLU as activation layer. The sparse lin-
ear blocks consist of a linear layer followed by a BN layer
and a leaky ReLU as activation layer. The final projection
head is a linear layer that projects the instance-wise embed-
dings into a feature space of dimension DA = 1024.

We keep deactivated targets for nold = 8 frames and
use different thresholds to handle new targets and re-
identification for the appearance and the motion model.
For the feature similarity, we use Tnewf

= Toldf
= 0.7 and

for the center distance, we use Tnewd
= Toldd

= 2. The
weights for the feature cost and the center distance in Eq. (1)
are αf = 0.4 and αd = 0.7. In the loss function, see Eq. (5)
we use τ = 0.1. At each step, the positive and negative
samples are selected from a sequence of scans of random

Method LSTQ Sassoc Scls IoUSt IoUTh

4DPLS[1] 56.89 56.36 57.43 66.86 51.64
Ours (without pose estimates) 60.04 59.49 60.60 66.88 51.98
Ours (with pose estimates[3]) 63.11 65.71 60.60* 66.88* 51.98*

Table 1: 4D panoptic segmentation on SemanticKITTI test set.
Numbers with * denote the same segmentation results. Adding
pose information to our single-scan panoptic backbone does not
influence the segmentation performance.

feature encoding motion model poses Sassoc

A X 59.9
B X X 70.4
C X X X 71.2
D X 68.0
E X X X 71.7
F X X X X 72.9

Table 2: Influence of the different components of the approach in
Sassoc on SemanticKITTI validation set.

length ∆ ∈ [2, 5]. This way, at each step, the loss considers
samples from sequences of variable length, which provides
a different number of instances.

2. Experimental Evaluation

We evaluate our method on SemanticKITTI [2], which
consist of 22 sequences from the KITTI odometry
dataset [6]. Sequences 00 to 10 are used for training, leaving
sequence 08 as validation set and the test set consists of se-
quences 11 to 21. To evaluate our performance, we use the
LiDAR Segmentation and Tracking Quality (LTSQ) metric
LSTQ =

√
Scls × Sassoc [1]. It consists of two terms, the

classification score Scls and the association score Sassoc. As
we use single-scan predictions of frozen panoptic segmen-
tation backbone, our results do not change the segmentation
results represented by the Scls term. Thus, we focus instead
on the Sassoc term to evaluate the quality of our associations.

2.1. 4D Panoptic Segmentation Results

We outperform all previous methods without relying on
the pose estimations from a SLAM approach. See Tab. 1.
Both experiments using our method show the same segmen-
tation performance Scls, IoUSt, and IoUTh since we use the
semantic predictions from the same single-scan backbone
and the pose information does not modify semantic seg-
mentation results of a single scan. More detailed results
are shown in Tab. 1.

2.2. Ablation: Components

In this section, we illustrate the influence of the different
components of our approach on the Sassoc. Tab. 2 shows the
different performances on the validation set.

References
[1] M. Aygun, A. Osep, M. Weber, M. Maximov, C. Stachniss,

J. Behley, and L. Leal-Taixe. 4D Panoptic LiDAR Segmen-
tation. In Proc. of the IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), 2021.

[2] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,
C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for
Semantic Scene Understanding of LiDAR Sequences. In
Proc. of the IEEE/CVF Intl. Conf. on Computer Vision
(ICCV), 2019.

[3] J. Behley and C. Stachniss. Efficient Surfel-Based SLAM us-
ing 3D Laser Range Data in Urban Environments. In Proc. of
Robotics: Science and Systems (RSS), 2018.

[4] C. Choy, J. Gwak, and S. Savarese. 4D Spatio-Temporal
ConvNets: Minkowski Convolutional Neural Networks. In
Proc. of the IEEE/CVF Conf. on Computer Vision and Pat-
tern Recognition (CVPR), 2019.

[5] D. Comaniciu and P. Meer. Mean Shift: A Robust Approach
Toward Feature Space Analysis. IEEE Trans. on Pattern
Analalysis and Machine Intelligence (TPAMI), 24:603–619,
2002.

[6] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite.
In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2012.

[7] F. Hong, H. Zhou, X. Zhu, H. Li, and Z. Liu. LiDAR-Based
Panoptic Segmentation via Dynamic Shifting Network. In
Proc. of the IEEE/CVF Conf. on Computer Vision and Pat-
tern Recognition (CVPR), 2021.

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint, abs/1502.03167, 2015.

[9] A. Jaegle, F. Gimeno, A. Brock, A. Zisserman, O. Vinyals,
and J. Carreira. Perceiver: General Perception with Iterative
Attention. In Proc. of the Int. Conf. on Machine Learning
(ICML), 2021.

[10] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan. Supervised Con-
trastive Learning. In Proc. of the Conference on Neural In-
formation Processing Systems (NeurIPS), volume 33, pages
18661–18673, 2020.

[11] H. Kuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955.

[12] A. van den Oord, Y. Li, and O. Vinyals. Representa-
tion Learning with Contrastive Predictive Coding. arXiv
preprint:1807.03748, 2019.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A.N. Gomez, L. Kaiser, and I. Polosukhin. Attention Is All
You Need. Proc. of the Conference on Neural Information
Processing Systems (NeurIPS), 2017.

[14] Z. Zhang, R. Girdhar, A. Joulin, and I. Misra. Self-
Supervised Pretraining of 3D Features on any Point-Cloud.
arXiv preprint:2101.02691, 2021.

