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Abstract

Depth-aware Video Panoptic Segmentation (DVPS) aims
to predict panoptic segmentation results and depth maps in
a video which is a challenging scene understanding prob-
lem. In this report, we present PolyphonicFormer, a vision
transformer to unify all the sub-tasks for DVPS task. Our
method explores the relation between depth prediction and
panoptic segmentation via query based learning. In partic-
ular, we design three different queries including thing query,
stuff query and depth query. Then we propose to learn the
correlation among these queries via dynamic convolution.
From the experiments, we prove the benefits of our design
from both depth and panoptic segmentation aspects. Since
each thing query also encodes the instance-wise informa-
tion, it is natural to perform tracking via cropping instance
mask features with appearance learning. Our method out-
performs the state-of-the-art method, ViP-Deeplab. Abla-
tion studies are reported to show how we improve the per-
formance. No external data is used.

1. Introduction
Depth-aware Video Panoptic Segmentation (DVPS) [13]

is a challenging computer vision task which extends the
video panoptic segmentation [8, 18] with monocular depth
estimation. Achieving accurate and robust DVPS methods
in real world scenarios can greatly promote the development
of video analysis applications including auto-driving. Re-
cently, transformers [1,4] make a great process in computer
vision. Object queries have been shown to be very effective
for detection and segmentation task where they play central
roles for modeling instance and stuff in the scene. Further-
more, one core advantage in transformers lies on modeling
multi modal modeling. Motivated by these two points, we
aim to design a unified model to solve the DVPS via a trans-
former architecture.

We propose PolyphonicFormer to jointly model the
panoptic segmentation and depth via object queries. In
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particular, we represent thing, stuff and depth as queries.
Since depth is not countable, we associate the thing and
stuff queries with depth and make it into patched based pre-
diction. In particular, we broadcast thing and stuff queries
into initial depth query and then we perform dynamic con-
volution and self-attention among these queries. For thing
and stuff queries, we follow the recent work [20] design to
refine thing and stuff queries. Moreover, motivated by re-
cent works [15,20], our model avoids the heavy transformer
encoder by interactively refining the object queries in the
decoder part. The backbone of our model can be a convolu-
tion network or a vision transformer. Our experiment shows
that joint depth, thing and stuff queries learning can boost
both results of panoptic segmentation and depth estima-
tion on the strong baselines. Thus we name our method as
PolyphonicFormer (Polyphonic Transformer) where differ-
ent queries come from different sources (depth or panoptic)
but both can benefit each other which is just like polyphony
used in music since late Middle Ages. Our method achieves
63.6 DSTQ on KITTI-DVPS test set and suppress the pre-
vious work Vip-Deeplab. To summarize, our contributions
are as follows.

• PolyphonicFormer is the first transformer-like archi-
tecture with unified query modeling to tackle the
DVPS task. It can be trained end-to-end without ex-
tra region proposal network for box detection.

• PolyphonicFormer models the depth prediction,
panoptic segmentation prediction and tracking using
the object query and link both semantics in panoptic
segmetnation and geometric in depth with query inter-
action.

• PolyphonicFormer outperforms previous ViP-Deeplab
on KITTI-DVPS without the extra posting for tracking.

2. Method
In this section, we explain the architecture design of

PolyphonicFormer in detail. Fig. 1 gives an overall illustra-
tion of the proposed method. Our PolyphonicFormer con-
tains three parts: (1) an encoder network to extract features
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Figure 1. An illustration of our proposed PolyphonicFormer. Our method contains three parts: (1) Encoder Network as Feature Extractor to
obtain two parallel features for depth prediction and panoptic segmentation(bottom left). (2) Decoder Network to refine the all the queries
at the same time (middle). (3) Tracking Head to learn the feature embedding among the frames (bottom).

for each frames. (2) a cascaded decoder which takes three
different types of queries and backbone features as inputs
and outputs panoptic segmentation results and depth maps.
It contains two paths: depth path and panoptic path. (3) a
tracking head with several convolution layers to learn the
instance-wised tracking embeddings for each thing query.

Encoder Network This part extract image features for each
input image. It contains a backbone network(Convolution
Network [7] or Swin Transformer [10]) with Feature Pyra-
mid Network as neck. We adopt semantic FPN design to
fuse features in a top-down manner. In particular, we adopt
two parallel fusion to obtain two features for depth (Xd) and
panoptic segmentation (Xp) respectively.

Thing, Stuff and Depth as Queries Beyond previous
works [1, 3], our model takes thing, stuff and depth as in-
put queries to directly obtain the final panoptic segmenta-
tion and depth maps. Following previous works [15, 20],
the initial weights of these queries are directly copied from
the first stage weights of initial heads. For things and stuff
mask predictions, we use 1× 1 convolution layer to obtains
the outputs of both things and stuff masks. For initial depth
prediction, we also use 1 × 1 convolution layer to predic-
tion dense depth maps. All these predictions are directly
supervised with corresponding ground truth. Using such
initial heads can avoid heavier transformer encoder layers

and save the time for learning correspondence between ob-
ject queries and input features. Since depth prediction is not
countable, we broadcast both thing query and stuff query
into the initial depth query via sum operation. Then we ob-
tain the same number of depth queries with both thing and
stuff queries. We name this process Query Linking (QL).

Joint Panoptic and Depth Interaction The decoder takes
previous mask predictions, previous object queries and
shared features as inputs and outputs current refined mask
predictions, refined object queries and refined depth predic-
tions. As shown in Fig. 1, it contains two path: panop-
tic path and depth path where depth queries are obtained
directly from the thing and stuff queries for each interac-
tion (shown in red arrow in Fig. 1). In particular, for both
things and stuff queries, following previous work [20], we
first obtained feature queries via grouping between previous
mask predictions and input features (Xp) where we term
this process as MG (Mask Groping). Then we perform dy-
namic convolution to refine input thing and stuff queries
with such learned feature queries. In particular, we adopt
the same design [20] by learning the gating function to up-
date the refine queries. We term this process Query Update
(QU). After that, we adopt self attention layers to learn the
correspondence among each queries to obtain the updated
queries. We name this operation Query Reasoning (QR)



to get the full correlation among queries. Finally refined
masks are obtained via dot product between refined queries
and Xp which will be used for the next stage input. For
depth queries, we adopt the same strategies since the num-
ber of depth queries are same with thing and stuff queries.
We obtained the refined depth queries and depth prediction
which have the same shapes as the thing stuff queries and
mask predictions. The main differences are two points: (1)
We obtain query level depth prediction via thing and stuff
masks from panoptic path. (2) The stuff depth query and
things depth query is refined according to thing and stuff
masks from panoptic path which means we obtain depth
query features via shared mask predictions. This is shown
in Fig 1(arrows with orange color). Since our method oper-
ates on query level and this can avoid heavier computation
cost on feature level compared with origin detection vision
transformer [1, 3].
Tracking with Thing Query For tracking part, we adopt
previous work design [11] and add a tracking head, where
we directly learn appearance embedding among the differ-
ent frames. During training, we first match predicted thing
masks from panoptic path to ground truth thing mask ac-
cording to mask iou. To improve location cues of masks,
we adopt corresponding ground truth boxes as supervision
signals to train these tracking embeddings. During the in-
ference, we use the thing masks which are generated from
thing query to obtain final tracking embedding for tracking
which is shown in bottom part of Fig. 1.
Loss Function All the outputs are encoded via queries, we
need to assign ground truth according to cost. In particu-
lar, we mainly follow the design of MaskFormer and Max-
Deeplab [3, 16]. We use the classification and mask based
cost. For depth prediction, we use mask based bipartite
matching to assign depth ground truth for each query. Fol-
lowing the previous works [5, 13], we adopt absolute rela-
tive loss and square relative loss. For panoptic segmenta-
tion, we adopt focal loss to learn the mask prediction and
label classification. For tracking heads, we adopt the loss
proposed in [11]. All the weights are set to 1 by default.
Inference We directly get the outputs of panoptic masks
and depth maps from the corresponding queries according
to their sorted scores. For final panoptic segmentation re-
sults, we adopt the method used in Panoptic-FPN [9] to
merge panoptic mask. For final depth prediction, since
each depth query encodes the instance-wised information,
we first filter each depth map via corresponding mask pre-
diction and then merge the such depth prediction into the
initial depth map. For tracking, we mainly use the previ-
ous tracker [11]. We first obtain learned tracking feature
embedding via final thing mask prediction. We adopt ROI
Align [6] to crop image features directly from the backbone
features. To assign each thing mask a id, we calculate the
similarities among the learned embeddings and assign track

Method Backbone PQ PQth PQstuff abs rel

Panoptic baseline ResNet-50 61.8 55.2 66.5 -
Depth baseline ResNet-50 - - - 0.105
Our ResNet-50 63.9 57.5 68.6 0.089
Panoptic baseline Swin-base 66.0 60.5 71.3 -
Depth baseline Swin-base - - - 0.086
Our Swin-base 67.8 61.0 72.4 0.072
Our+RFP [12] Swin-base 68.8 62.0 73.1 0.069

Table 1. Ablation Studies on image baseline on Cityscapes-VPS
validation set.

Method backbone DSTQ AQ

PolyphonicFormer + DeepSort Swin-b 51.8 25.9
PolyphonicFormer + Unitrack Swin-b 49.3 22.5
PolyphonicFormer + QuaniDenseTrack Swin-b 63.6 46.2

Table 2. Ablation Studies on tracking part using KITTI-DVPS.

Method backbone DSTQ

Vip-Deeplab WiderResNet-41 63.3
rl-lab unknown 54.8
yang26 unknown 55.6
PolyphonicFormer(HarborY) Swin-b 63.6

Table 3. Performance Comparison on ICCV-2021 KITTI-DVPS
challenge.

id in a online manner.

3. Experiment
Experimental Setup We carry out ablation studies on
Cityscapes-DVPS datasets for evaluating panoptic segmen-
tation results and depth results. Then we verify the tracking
parts of our model on the KITTI-DVPS test set. We imple-
ment our models with Pytorch. We follow the same training
settings from Panoptic Deeplab where we first pretrain our
model on both Mapillary and Cityscapes datasets for Panop-
tic Segmentation and then we fine-tune the model with our
depth query on Cityscapes-DVPS and KITTI-DVPS. Dur-
ing pretraining, we randomly resize the origin images with
scale from 1.0 to 2.0 and then we perform random crops
with size 1024×2048. We pretrain our model on Mapillary
dataset by 240 epochs and Cityscape dataset by 64 epochs.
The batch size is set to 16 and we adopt the synchronized
batch normalization during the training. For video training
settings on KITTI-DVPS, we use full image inputs and ran-
domly sample one nearly frame to learn the tracking embed-
dings. All the models use the single scale inference. For im-
age models, we report Panoptic Quality (PQ) and absolute
relative depth errors (abs rel). For video models, we report
Depth-aware Segmentation and Tracking Quality (DSTQ)
on KITTI-DVPS [18]. We also report Association Quality
(AQ) to evaluate tracking performance.
Ablation Studies Following previous work [13], our im-



age baseline model is firstly pretrained on Mapillary and
datasets. Since there are no depth annotation, we only train
our panoptic path of our model. Then we apply both panop-
tic path and depth path to train the image baseline model on
Cityscape-DVPS. We adopt two different backbone mod-
els including ResNet-50 and Swin-base. For depth base-
line, we adopt dense prediction-like model [14] as baseline.
As shown in Tab. 1, compared with strong baseline, our
methods get consistent gains(about 2.0 PQ gains and 0.015
abs rel error drops) among different backbone network. In
Tab. 2, we explore three different tracking methods includ-
ing DeepSort [19], Unitrack [17] and Quansidense [11]. All
these tracking methods are modified into our framework.
We found the Quansidense tracker works best which is cho-
sen as the final tracking head. The results show that appear-
ance modeling is more important than motion modeling for
tracking. Note that our result only uses the tracking embed-
ding and we believe there are still a large space to improve
for tracking which will be our future work.
Submitted Entry to Challenge On the KITTI DVPS-test
set, we use the strong backbone to train our model with
tracking heads. We finetune our model which is trained
from Cityscape-DVPS on KITTI-DVPS train set. As shown
in Tab. 3, our outperform previous strong dense prediction
baseline [13]. Note that Vip-Deeplab uses more extra en-
gineering tricks including TTA (Test Time Augmentation),
AutoAug and Semi-Supervised Learning [2]. We believe
our method can still gain the performance by applying these
tricks and this will be our future work.
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