CVPR 2019 Detection Challenge Results

Click on a measure to sort the table accordingly. See below for a more detailed description.

Benchmark Statistics

0.81 75.0 79.4 12.3 340,612 55,251 39,930 89.5 86.0 87.7 3.0
D. Borysenko, D. Mykheievskyi, V. Porokhonskyy. ODESA: Object Descriptor that is Smooth Appearance-wise for object tracking tasks. In (to be submitted to ECCV'20), .
0.73 39.0 71.5 35.7 308,545 159,983 71,997 81.1 65.9 72.7 11.2
G. Amato, L. Ciampi, F. Falchi, C. Gennaro, N. Messina. Learning pedestrian detection from virtual worlds. In International Conference on Image Analysis and Processing, 2019.

Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
AP higher 1Average Precision taken over a set of reference recall values (0:0.1:1)
MODA higher 100%Multi-Object Detection Accuracy [1]. This measure combines false positives and missed targets.
MODP higher 100%Multi-Object Detection Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
FAF lower 0The average number of false alarms per frame.
TP higher #GTThe total number of true positives.
FP lower 0The total number of false positives.
FN lower 0The total number of false negatives (missed targets).
Rcll higher 100%Ratio of correct detections to total number of GT boxes.
Prcn higher 100%Ratio of TP / (TP+FP).
F1 higher 100%Harmonic mean of precision and recall.
Hz higher Inf.Processing speed (in frames per second excluding the detector) on the benchmark. The frequency is provided by the authors and not officially evaluated by the MOTChallenge.


Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
using private detections This method used a private detection set as input.
new This entry has been submitted or updated less than a week ago.


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.