MOT17 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
ReTracktor
1. using public detections
26.8
55.1
±14.0
52.821.4% 34.9% 15,489235,6942,119 (36.4)4,725 (81.1)0.8Public
Anonymous submission
LSST17
2. using public detections
28.9
54.7
±12.9
62.320.4% 40.1% 26,091228,4341,243 (20.9)3,726 (62.6)1.5Public
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification
DGCT
3. using public detections
22.0
54.5
±13.1
51.321.0% 35.4% 10,471243,1432,865 (50.3)4,889 (85.9)7.0Public
CJY, HYW, KHW @ HRI-SH
ISDH_HDAv2
4. online method using public detections
29.6
54.5
±14.5
65.926.4% 32.1% 46,693207,0933,010 (47.6)6,000 (94.8)3.6Public
MM-008988/ IEEE Transactions on Multimedia
TPM
5. using public detections
28.3
54.2
±13.0
52.622.8% 37.5% 13,739242,7301,824 (32.0)2,472 (43.4)0.8Public
Anonymous submission
HDTR
6. using public detections
22.3
54.1
±11.4
48.423.3% 34.8% 18,002238,8181,895 (32.9)2,693 (46.7)1.8Public
MOT_TBC
7. using public detections
31.9
53.9
±15.7
50.020.2% 36.7% 24,584232,6702,945 (50.1)4,612 (78.5)6.7Public
Anonymous submission
Tracktor17
8. online method using public detections
33.4
53.5
±14.5
52.319.5% 36.6% 12,201248,0472,072 (37.0)4,611 (82.3)1.5Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
MOT_AF
9. online method using public detections new
25.3
53.5
±13.5
52.219.5% 36.6% 12,201248,0472,114 (37.7)4,611 (82.3)25.2Public
Anonymous submission
MFT
10. online method using public detections
45.8
53.1
±16.6
50.120.4% 39.4% 35,295225,6063,681 (61.3)6,271 (104.5)0.7Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
CRF_TRA
11. using public detections
24.5
53.1
±12.2
53.724.2% 30.7% 27,194234,9912,518 (43.2)4,918 (84.3)1.4Public
Anonymous submission
UTA
12. online method using public detections
32.3
53.0
±11.6
52.221.7% 31.5% 24,468238,3562,292 (39.7)6,231 (107.9)5.0Public
Anonymous submission
ENFT17
13. using public detections
25.0
52.8
±13.1
57.123.1% 36.8% 26,754237,9091,667 (28.8)2,557 (44.2)0.5Public
BUAA
PV
14. online method using public detections
36.8
52.8
±14.1
51.819.7% 34.0% 15,884246,9393,711 (66.0)8,757 (155.7)3.5Public
Anonymous submission
LSST17O
15. online method using public detections
34.8
52.7
±13.3
57.917.9% 36.6% 22,512241,9362,167 (37.9)7,443 (130.3)1.8Public
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification
IDGA
16. using public detections
21.6
52.6
±13.4
61.323.6% 40.2% 29,049236,8301,402 (24.2)2,613 (45.0)59.2Public
Anonymous submission
JBNOT
17. using public detections
32.8
52.6
±12.3
50.819.7% 35.8% 31,572232,6593,050 (51.9)3,792 (64.5)5.4Public
R. Henschel, Y. Zou, B. Rosenhahn. Multiple People Tracking using Body and Joint Detections. In CVPRW, 2019.
TppNoFPN
18. using public detections
37.9
52.4
±15.3
52.618.5% 37.2% 18,635247,1042,726 (48.5)5,461 (97.2)4.2Public
Anonymous submission
FAMNet
19. online method using public detections
34.8
52.0
±12.0
48.719.1% 33.4% 14,138253,6163,072 (55.8)5,318 (96.6)0.0Public
P. Chu, H. Ling. FAMNet: Joint Learning of Feature, Affinity and Multi-dimensional Assignment for Online Multiple Object Tracking. In ICCV, 2019.
eTC17
20. using public detections
28.6
51.9
±12.4
58.123.1% 35.5% 36,164232,7832,288 (38.9)3,071 (52.3)0.7Public
G. Wang, Y. Wang, H. Zhang, R. Gu, J. Hwang. Exploit the Connectivity: Multi-Object Tracking with TrackletNet. In arXiv preprint arXiv:1811.07258, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
LSMT
21. online method using public detections
29.5
51.9
±12.0
53.517.4% 35.0% 18,672250,6622,257 (40.6)5,733 (103.2)8.9Public
Anonymous submission
CMT
22. using public detections
26.1
51.8
±12.9
60.719.6% 42.8% 29,528240,9601,217 (21.2)2,008 (35.0)6.5Public
#Submission: TCSVT-02964-2019
TOPA
23. online method using public detections
31.9
51.8
±13.5
53.419.6% 33.1% 27,603241,5462,668 (46.7)5,790 (101.2)443.9Public
Anonymous submission
eHAF17
24. using public detections
29.3
51.8
±13.2
54.723.4% 37.9% 33,212236,7721,834 (31.6)2,739 (47.2)0.7Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
SNet_pub
25. online method using public detections
38.6
51.7
±12.0
53.418.0% 33.5% 26,809243,0662,735 (48.0)6,157 (108.2)4.9Public
Anonymous submission
TAR_1
26. online method using public detections
42.2
51.6
±11.9
41.421.7% 28.7% 33,514235,8593,629 (62.4)5,949 (102.2)5.6Public
Anonymous submission
AFN17
27. using public detections
30.8
51.5
±13.0
46.920.6% 35.5% 22,391248,4202,593 (46.3)4,308 (77.0)1.8Public
H. Shen, L. Huang, C. Huang, W. Xu. Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. In CoRR, 2018.
overlap
28. using public detections
24.9
51.5
±13.1
55.623.0% 36.1% 38,322233,2751,860 (31.7)2,935 (50.0)66.9Public
Anonymous submission
ReID_Seq
29. online method using public detections
32.8
51.4
±12.7
49.220.3% 34.1% 23,045247,8853,226 (57.5)4,148 (74.0)14.0Public
Anonymous submission
YOONKJ17
30. online method using public detections
36.2
51.4
±13.5
54.021.2% 37.3% 29,051243,2022,118 (37.2)3,072 (54.0)3.4Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
AReid17
31. online method using public detections
27.9
51.4
±12.2
53.919.2% 32.3% 30,079241,3642,993 (52.3)6,373 (111.4)33.7Public
Anonymous submission
FWT
32. using public detections
34.8
51.3
±13.1
47.621.4% 35.2% 24,101247,9212,648 (47.2)4,279 (76.3)0.2Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
NOTA
33. using public detections
32.2
51.3
±11.7
54.517.1% 35.4% 20,148252,5312,285 (41.4)5,798 (105.0)17.8Public
SPL-26677-2019
jCC
34. using public detections
30.7
51.2
±14.5
54.520.9% 37.0% 25,937247,8221,802 (32.1)2,984 (53.2)1.8Public
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
STCG17
35. using public detections
29.8
51.1
±12.9
54.520.4% 38.6% 32,258241,9161,702 (29.8)2,483 (43.5)66.9Public
Anonymous submission
DTBasline
36. online method using public detections
30.5
51.1
±11.7
53.416.7% 35.5% 20,309253,2452,549 (46.2)5,910 (107.2)22.2Public
Anonymous submission
MOT17ZH
37. online method using public detections
38.5
51.1
±13.7
53.416.7% 35.5% 20,309253,2452,549 (46.2)5,910 (107.2)3.7Public
Anonymous submission
SRPN17
38. online method using public detections
40.0
51.0
±11.7
53.516.8% 35.1% 21,011252,8082,596 (47.0)5,981 (108.4)4.1Public
Anonymous submission
MOTDT17
39. online method using public detections
34.4
50.9
±11.9
52.717.5% 35.7% 24,069250,7682,474 (44.5)5,317 (95.7)18.3Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
MHT_DAM
40. using public detections
37.7
50.7
±13.7
47.220.8% 36.9% 22,875252,8892,314 (41.9)2,865 (51.9)0.9Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TLMHT
41. using public detections
38.8
50.6
±12.5
56.517.6% 43.4% 22,213255,0301,407 (25.7)2,079 (37.9)2.6Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
DeepMP17
42. using public detections
30.8
50.4
±13.1
52.318.8% 38.7% 22,535255,3561,868 (34.1)3,473 (63.4)7.4Public
MOTPP17
43. using public detections new
36.3
50.3
±13.4
47.522.0% 39.9% 27,346250,6922,549 (45.9)3,022 (54.4)35.5Public
Anonymous submission
DEEP_TAMA
44. online method using public detections
34.8
50.3
±13.3
53.519.2% 37.5% 25,479252,9962,192 (39.7)3,978 (72.1)1.5Public
Y. Yoon, D. Kim, K. Yoon, Y. Song, M. Jeon. Online Multiple Pedestrian Tracking using Deep Temporal Appearance Matching Association. In arXiv:1907.00831, 2019.
Q_ls
45. online method using public detections
49.7
50.2
±14.4
43.619.7% 37.3% 23,143253,1514,414 (80.1)6,112 (110.9)1.8Public
Anonymous submission
EDMT17
46. using public detections
36.4
50.0
±13.9
51.321.6% 36.3% 32,279247,2972,264 (40.3)3,260 (58.0)0.6Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
GMPHDOGM17
47. online method using public detections
35.0
49.9
±13.6
47.119.7% 38.0% 24,024255,2773,125 (57.1)3,540 (64.6)30.7Public
Y. Song, K. Yoon, Y. Yoon, K. Yow, M. Jeon. Online Multi-Object Tracking Framework with the GMPHD Filter and Occlusion Group Management. In arXiv:1907.13347, 2019.
OST
48. using public detections
44.8
49.7
±14.0
50.417.0% 36.7% 21,811258,6493,077 (56.8)4,339 (80.1)1.7Public
Anonymous submission
MTDF17
49. online method using public detections
53.3
49.6
±13.9
45.218.9% 33.1% 37,124241,7685,567 (97.4)9,260 (162.0)1.2Public
Z. Fu, F. Angelini, J. Chambers, S. Naqvi. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. In IEEE Transactions on Multimedia, 2019.
PHD_GM
50. online method using public detections
46.2
48.8
±13.4
43.219.1% 35.2% 26,260257,9714,407 (81.2)6,448 (118.8)22.3Public
R. Sanchez-Matilla, A. Cavallaro. A predictor of moving objects for First-Person vision. In Proceedings of IEEE International Conference Image Processing, 2019.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
SiaIOU
51. using public detections
46.0
48.5
±16.7
48.518.9% 38.8% 26,867260,2783,152 (58.5)4,391 (81.5)8.3Public
Anonymous submission
DualAtte
52. online method using public detections
49.2
48.4
±14.5
43.717.6% 39.0% 24,915262,6543,423 (64.0)5,192 (97.1)0.3Public
Anonymous submission
SOTD_MC
53. online method using public detections
42.3
48.4
±15.0
45.519.4% 35.9% 33,525255,0912,531 (46.2)4,944 (90.2)67.0Public
Anonymous submission
HAM_SADF17
54. online method using public detections
39.5
48.3
±13.2
51.117.1% 41.7% 20,967269,0381,871 (35.8)3,020 (57.7)5.0Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018.
DMAN
55. online method using public detections
40.6
48.2
±12.3
55.719.3% 38.3% 26,218263,6082,194 (41.2)5,378 (100.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
2MPT
56. using public detections
37.6
48.1
±14.2
52.917.4% 39.6% 30,650260,1331,860 (34.5)2,784 (51.7)2.7Public
Anonymous submission
DeepMOTRPN
57. online method using public detections
47.0
48.1
±14.5
43.017.6% 38.6% 26,490262,5783,696 (69.1)5,353 (100.1)4.9Public
Anonymous submission
AM_ADM17
58. online method using public detections
41.8
48.1
±13.8
52.113.4% 39.7% 25,061265,4952,214 (41.8)5,027 (94.9)5.7Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
PHD_GSDL17
59. online method using public detections
49.4
48.0
±13.6
49.617.1% 35.6% 23,199265,9543,998 (75.6)8,886 (168.1)6.7Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
AEb
60. using public detections
33.6
47.9
±13.6
47.018.1% 40.7% 15,828276,1792,082 (40.8)4,733 (92.7)66.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
LT17
61. online method using public detections
51.8
47.7
±16.6
45.217.3% 36.0% 27,856263,0624,042 (75.7)9,183 (172.0)7.2Public
Anonymous submission
MHT_bLSTM
62. using public detections
44.8
47.5
±12.6
51.918.2% 41.7% 25,981268,0422,069 (39.4)3,124 (59.5)1.9Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
MOT_HY
63. using public detections
52.3
47.3
±121.2
49.417.2% 33.8% 46,875246,0614,231 (75.0)8,188 (145.2)2.0Public
Anonymous submission
QiMOT
64. online method using public detections
58.3
47.2
±13.1
40.815.5% 39.9% 18,907274,8284,320 (84.2)5,917 (115.4)1.8Public
Anonymous submission
MASS
65. online method using public detections
52.1
46.9
±14.1
46.016.9% 36.3% 25,733269,1164,478 (85.6)11,994 (229.3)17.1Public
H. Karunasekera, H. Wang, H. Zhang. Multiple Object Tracking With Attention to Appearance, Structure, Motion and Size. In IEEE Access, 2019.
Lab031
66. using public detections
51.1
46.9
±16.2
48.117.7% 36.1% 31,634263,9383,795 (71.3)10,498 (197.3)9.4Public
Anonymous submission
SNM17
67. online method using public detections
61.8
46.8
±13.8
43.416.2% 37.1% 25,104271,0424,213 (81.1)9,891 (190.3)0.8Public
Anonymous submission
MHT_ReID7
68. using public detections
55.3
46.5
±13.7
46.918.8% 40.3% 22,203276,3743,386 (66.4)8,521 (167.0)1.6Public
Anonymous submission
AEb_O
69. online method using public detections
46.5
46.4
±13.9
44.916.5% 41.4% 17,030283,2652,266 (45.5)5,053 (101.5)1.8Public
Anonymous submission
PHD_LMP
70. online method using public detections
57.4
45.9
±13.1
42.515.5% 37.9% 27,946272,1964,977 (96.2)6,985 (135.0)29.4Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
DS_TW_F
71. online method using public detections
39.9
45.7
±27.0
50.910.8% 75.4% 6,528298,3681,329 (28.2)3,180 (67.5)66.9Public
Anonymous submission
OLGT_new
72. online method using public detections
49.6
45.7
±22.8
49.410.8% 75.5% 6,915298,2881,418 (30.1)3,641 (77.2)6.1Public
Anonymous submission
EDA_GNN
73. online method using public detections
51.9
45.5
±13.8
40.515.6% 40.6% 25,685277,6634,091 (80.5)5,579 (109.8)39.3Public
Paper ID 2713
IOU17
74. using public detections
54.0
45.5
±13.6
39.415.7% 40.5% 19,993281,6435,988 (119.6)7,404 (147.8)1,522.9Public
E. Bochinski, V. Eiselein, T. Sikora. High-Speed Tracking-by-Detection Without Using Image Information. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
DCORV2
75. online method using public detections
52.4
45.5
±13.9
36.114.6% 40.4% 21,161282,9013,592 (72.0)7,696 (154.4)35.5Public
Anonymous submission
HISP_DAL17
76. online method using public detections
60.4
45.4
±13.9
39.914.8% 39.2% 21,820277,4738,727 (171.7)7,147 (140.6)3.2Public
N. Baisa. Robust Online Multi-target Visual Tracking using a HISP Filter with Discriminative Deep Appearance Learning. In CoRR, 2019.
zxbtk17
77. online method using public detections
56.5
45.1
±14.7
40.017.7% 31.8% 33,186273,5313,303 (64.1)8,148 (158.1)8.3Public
Anonymous submission
GF
78. online method using public detections
57.2
45.0
±13.9
39.115.0% 39.0% 22,387277,33510,397 (204.5)7,421 (145.9)9.9Public
Anonymous submission
dcor
79. online method using public detections
55.8
45.0
±14.2
34.015.4% 38.2% 30,231275,2654,801 (93.7)8,498 (165.9)44.4Public
Anonymous submission
DSA_MOT17
80. online method using public detections
44.8
45.0
±12.6
43.615.8% 39.2% 21,442286,4822,491 (50.6)3,824 (77.7)9.9Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
FPSN
81. online method using public detections
55.5
44.9
±13.9
48.416.5% 35.8% 33,757269,9527,136 (136.8)14,491 (277.8)10.1Public
S. Lee, E. Kim. Multiple Object Tracking via Feature Pyramid Siamese Networks. In IEEE ACCESS, 2018.
OTCD_1
82. online method using public detections
55.3
44.9
±13.6
42.314.0% 44.2% 16,280291,1363,573 (73.8)5,444 (112.5)46.5Public
Q. Liu, B. Liu, Y. Wu, W. Li, N. Yu. Real-Time Online Multi-Object Tracking in Compressed Domain. In IEEE Access, 2019.
HISP_T17
83. online method using public detections
62.4
44.6
±14.2
38.815.1% 38.8% 25,478276,39510,617 (208.1)7,487 (146.8)4.7Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
GMPHD_DAL
84. online method using public detections
63.5
44.4
±13.9
36.214.9% 39.4% 19,170283,38011,137 (223.7)13,900 (279.3)3.4Public
N. Baisa. Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning. In 22nd International Conference on Information Fusion, 2019.
GOTURN_3B
85. online method using public detections
60.3
44.3
±13.7
38.513.0% 43.2% 30,302279,1444,861 (96.2)5,277 (104.4)48.6Public
Anonymous submission
SAS_MOT17
86. using public detections
49.9
44.2
±12.2
57.216.1% 44.3% 29,473283,6111,529 (30.7)2,644 (53.2)4.8Public
A. Maksai, P. Fua. Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking. In CVPR, 2019.
GM_PHD_D
87. online method using public detections
61.8
44.0
±13.8
34.214.8% 39.4% 19,135283,53013,556 (272.5)13,821 (277.8)9.9Public
Anonymous submission
GMPHD_SHA
88. online method using public detections
60.7
43.7
±12.5
39.211.7% 43.0% 25,935287,7583,838 (78.3)5,056 (103.2)9.2Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
MOTbyReID
89. online method using public detections
65.8
43.6
±13.7
37.117.6% 36.3% 35,725270,03612,347 (236.8)11,408 (218.8)2.5Public
Anonymous submission
ZM
90. online method using public detections
68.9
43.5
±13.9
32.614.5% 39.9% 25,083284,4059,197 (185.4)8,849 (178.4)14.4Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TPbase17
91. online method using public detections
60.3
43.3
±15.0
48.216.2% 36.6% 49,992265,8154,194 (79.3)12,103 (228.8)22.2Public
Anonymous submission
SORT17
92. online method using public detections
66.0
43.1
±13.3
39.812.5% 42.3% 28,398287,5824,852 (99.0)7,127 (145.4)143.3Public
A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft. Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP), 2016.
DAN__test
93. using public detections
67.9
43.0
±14.7
43.313.5% 40.0% 30,367283,5337,576 (152.3)14,990 (301.3)1.8Public
Anonymous submission
D_SST_V1
94. online method using public detections
65.0
42.7
±13.9
46.111.8% 44.4% 18,861298,9895,531 (117.7)13,775 (293.0)2.3Public
Anonymous submission
EAMTT
95. online method using public detections
61.8
42.6
±13.3
41.812.7% 42.7% 30,711288,4744,488 (91.8)5,720 (117.0)12.0Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro. Online Multi-target Tracking with Strong and Weak Detections. In Computer Vision -- ECCV 2016 Workshops, 2016.
ms_dh
96. online method using public detections
72.7
42.6
±14.6
40.113.6% 40.0% 31,878284,5287,446 (150.2)14,736 (297.3)4.0Public
Anonymous submission
CASC_MOT
97. online method using public detections
59.8
42.3
±12.8
46.89.1% 44.1% 21,035300,7973,616 (77.4)16,656 (356.7)11.4Public
Anonymous submission
GM_PHD
98. online method using public detections
65.2
42.1
±13.0
33.911.9% 42.7% 18,214297,64610,698 (226.4)10,864 (229.9)9.9Public
Anonymous submission
GMPHD_N1Tr
99. online method using public detections
65.8
42.1
±13.5
33.911.9% 42.7% 18,214297,64610,698 (226.4)10,864 (229.9)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019.
c3d_Track
100. online method using public detections
65.6
41.5
±13.7
40.210.7% 48.5% 33,332292,9313,890 (80.9)11,454 (238.2)22.2Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
CGHA_MOT
101. online method using public detections
66.0
41.2
±14.1
44.08.3% 45.9% 25,462299,1127,294 (155.2)18,655 (397.0)11.4Public
Anonymous submission
TM_track
102. online method using public detections
78.7
41.1
±14.9
32.813.2% 41.3% 27,606287,51117,408 (355.0)15,197 (309.9)2.5Public
Anonymous submission
98K
103. using public detections
54.9
40.8
±17.2
37.015.6% 38.1% 32,312298,1743,514 (74.5)4,991 (105.8)17.7Public
Anonymous submission
XYHv2
104. online method using public detections
78.8
39.9
±12.4
23.89.9% 41.8% 29,713296,70412,900 (272.1)12,911 (272.3)7.8Public
Anonymous submission
GMPHD_KCF
105. online method using public detections
73.8
39.6
±13.6
36.68.8% 43.3% 50,903284,2285,811 (117.1)7,414 (149.4)3.3Public
T. Kutschbach, E. Bochinski, V. Eiselein, T. Sikora. Sequential Sensor Fusion Combining Probability Hypothesis Density and Kernelized Correlation Filters for Multi-Object Tracking in Video Data. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017.
GLMBS3
106. using public detections
71.2
38.0
±13.7
32.39.3% 52.8% 38,874304,0166,963 (151.0)3,927 (85.2)4.9Public
Anonymous submission
baitrack
107. using public detections
50.5
37.6
±19.4
20.321.0% 30.9% 99,085244,0018,808 (155.2)6,708 (118.2)6.4Public
Anonymous submission
GM_PHD
108. online method using public detections
67.8
36.4
±14.1
33.94.1% 57.3% 23,723330,7674,607 (111.3)11,317 (273.5)38.4Public
V. Eiselein, D. Arp, M. Pätzold, T. Sikora. Real-time Multi-Human Tracking using a Probability Hypothesis Density Filter and multiple detectors. In 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2012.
YoloSort
109. online method using public detections
58.4
29.5
±24.1
41.715.0% 36.4% 154,747238,2414,888 (84.6)4,952 (85.7)14.4Public
Anonymous submission
MOT_BJ
110. online method using public detections
84.2
-7.3
±23.5
1.40.0% 99.1% 52,007548,5314,824 (1,734.0)8,621 (3,098.8)0.0Public
Anonymous submission

Benchmark Statistics

SequencesFramesTrajectoriesBoxes
21177572355564228

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT17-03-SDP

MOT17-03-SDP

(70.7% MOTA)

MOT17-03-FRCNN

MOT17-03-FRCNN

(57.8% MOTA)

MOT17-06-SDP

MOT17-06-SDP

(47.9% MOTA)

...

...

MOT17-14-DPM

MOT17-14-DPM

(18.2% MOTA)

MOT17-14-FRCNN

MOT17-14-FRCNN

(17.4% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.