Short name:
GNNMatch
Detector:
Public
Description:
Reference:
I. Papakis, A. Sarkar, A. Karpatne. GCNNMatch: Graph Convolutional Neural Networks for Multi-Object Tracking via Sinkhorn Normalization. In arXiv preprint arXiv:2010.00067, 2020.
Last submitted:
March 02, 2021 (3 years ago)
Published:
July 15, 2020 at 14:27:00 CET
Submissions:
4
Project page / code:
Open source:
Yes
Hardware:
TITAN RTX
Runtime:
1.3 Hz
Benchmark performance:
Sequence | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag |
MOT17 | 57.3 | 56.3 | 45.4 | 575 (24.4) | 787 (33.4) | 14,100 | 225,042 | 60.1 | 96.0 | 45.2 | 45.9 | 52.5 | 67.9 | 48.4 | 77.4 | 81.5 | 0.8 | 1,911 (31.8) | 2,837 (47.2) |
Detailed performance:
Sequence | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag |
MOT17-01-DPM | 43.6 | 41.4 | 35.8 | 5 | 12 | 90 | 3,529 | 45.3 | 97.0 | 37.2 | 34.5 | 44.2 | 64.6 | 35.9 | 76.9 | 80.6 | 0.2 | 19 | 28 |
MOT17-01-FRCNN | 46.2 | 43.0 | 37.3 | 7 | 11 | 185 | 3,268 | 49.3 | 94.5 | 38.1 | 36.6 | 45.4 | 60.2 | 38.7 | 74.2 | 80.2 | 0.4 | 19 | 28 |
MOT17-01-SDP | 46.6 | 46.0 | 37.6 | 8 | 10 | 165 | 3,258 | 49.5 | 95.1 | 38.3 | 37.1 | 45.9 | 62.6 | 39.0 | 74.9 | 80.1 | 0.4 | 22 | 34 |
MOT17-03-DPM | 68.6 | 63.8 | 50.7 | 62 | 19 | 1,902 | 30,803 | 70.6 | 97.5 | 48.0 | 53.8 | 53.4 | 73.0 | 56.8 | 78.4 | 81.7 | 1.3 | 118 | 203 |
MOT17-03-FRCNN | 69.5 | 66.6 | 52.0 | 60 | 17 | 1,847 | 29,976 | 71.4 | 97.6 | 50.1 | 54.4 | 55.2 | 73.4 | 57.3 | 78.4 | 81.5 | 1.2 | 112 | 222 |
MOT17-03-SDP | 74.2 | 69.9 | 54.7 | 80 | 15 | 3,113 | 23,719 | 77.3 | 96.3 | 51.8 | 58.0 | 57.7 | 71.7 | 61.9 | 77.0 | 80.8 | 2.1 | 142 | 304 |
MOT17-06-DPM | 54.2 | 33.4 | 31.8 | 61 | 82 | 513 | 4,774 | 59.5 | 93.2 | 22.3 | 45.7 | 55.0 | 29.9 | 48.9 | 76.7 | 82.4 | 0.4 | 107 | 128 |
MOT17-06-FRCNN | 56.4 | 36.3 | 34.1 | 71 | 60 | 814 | 4,183 | 64.5 | 90.3 | 24.2 | 48.2 | 54.7 | 30.5 | 52.9 | 74.1 | 81.9 | 0.7 | 145 | 177 |
MOT17-06-SDP | 56.2 | 34.6 | 32.2 | 74 | 63 | 841 | 4,162 | 64.7 | 90.1 | 21.7 | 48.2 | 53.9 | 27.7 | 53.0 | 73.8 | 82.0 | 0.7 | 159 | 175 |
MOT17-07-DPM | 45.6 | 45.8 | 36.4 | 8 | 20 | 223 | 8,900 | 47.3 | 97.3 | 36.8 | 36.3 | 41.8 | 61.6 | 37.8 | 77.8 | 81.5 | 0.4 | 73 | 138 |
MOT17-07-FRCNN | 44.9 | 47.7 | 37.1 | 8 | 17 | 396 | 8,835 | 47.7 | 95.3 | 38.3 | 36.4 | 41.9 | 68.1 | 38.2 | 76.3 | 81.1 | 0.8 | 83 | 145 |
MOT17-07-SDP | 46.8 | 47.2 | 37.4 | 10 | 15 | 439 | 8,454 | 50.0 | 95.1 | 37.2 | 38.0 | 42.0 | 61.7 | 40.1 | 76.2 | 81.0 | 0.9 | 95 | 170 |
MOT17-08-DPM | 28.4 | 32.0 | 29.4 | 9 | 37 | 190 | 14,876 | 29.6 | 97.0 | 35.4 | 24.5 | 40.5 | 70.2 | 25.1 | 82.4 | 84.6 | 0.3 | 50 | 67 |
MOT17-08-FRCNN | 27.8 | 32.5 | 30.2 | 8 | 40 | 210 | 14,987 | 29.1 | 96.7 | 38.1 | 24.1 | 42.4 | 74.6 | 24.7 | 82.1 | 84.7 | 0.3 | 49 | 65 |
MOT17-08-SDP | 29.3 | 33.0 | 30.8 | 13 | 35 | 232 | 14,654 | 30.6 | 96.5 | 38.0 | 25.2 | 44.0 | 69.9 | 25.9 | 81.5 | 84.2 | 0.4 | 57 | 85 |
MOT17-12-DPM | 46.6 | 54.0 | 44.8 | 17 | 43 | 108 | 4,496 | 48.1 | 97.5 | 52.0 | 38.8 | 58.7 | 72.1 | 40.3 | 81.6 | 84.0 | 0.1 | 20 | 30 |
MOT17-12-FRCNN | 45.0 | 51.8 | 43.7 | 15 | 43 | 121 | 4,633 | 46.5 | 97.1 | 50.7 | 37.8 | 59.0 | 69.9 | 39.2 | 81.7 | 84.2 | 0.1 | 16 | 25 |
MOT17-12-SDP | 46.3 | 54.4 | 45.1 | 17 | 43 | 218 | 4,423 | 49.0 | 95.1 | 52.5 | 38.9 | 59.6 | 71.2 | 40.9 | 79.5 | 83.6 | 0.2 | 15 | 28 |
MOT17-14-DPM | 33.6 | 38.8 | 29.6 | 12 | 71 | 554 | 11,546 | 37.5 | 92.6 | 31.4 | 28.1 | 36.9 | 59.1 | 29.5 | 72.9 | 79.7 | 0.7 | 175 | 222 |
MOT17-14-FRCNN | 34.1 | 39.6 | 29.9 | 15 | 71 | 938 | 11,037 | 40.3 | 88.8 | 30.7 | 29.4 | 37.3 | 55.0 | 31.5 | 69.5 | 78.9 | 1.3 | 201 | 269 |
MOT17-14-SDP | 36.4 | 41.4 | 31.1 | 15 | 63 | 1,001 | 10,529 | 43.0 | 88.8 | 31.3 | 31.2 | 37.0 | 57.2 | 33.6 | 69.4 | 79.0 | 1.3 | 234 | 294 |
Raw data: