MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!

TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TPM
1. using public detections
21.3
49.1
±9.1
46.920.0% 38.9% 9,03883,031679 (12.5)850 (15.6)0.8Public
Anonymous submission
AFN
2. using public detections
19.2
49.0
±10.2
48.219.1% 35.7% 9,50882,506899 (16.4)1,383 (25.3)0.6Public
Anonymous submission
KCF16
3. online method using public detections
22.4
48.8
±9.6
47.215.8% 38.1% 5,87586,567906 (17.3)1,116 (21.2)0.1Public
Paper ID 207
LMP
4. using public detections
15.9
48.8
±9.8
51.318.2% 40.1% 6,65486,245481 (9.1)595 (11.3)0.5Public
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
TLMHT
5. using public detections
17.1
48.7
±8.6
55.315.7% 44.5% 6,63286,504413 (7.9)642 (12.2)4.8Public
Anonymous submission
TripBFT
6. online method using public detections
19.7
48.3
±8.1
50.915.4% 40.1% 2,70691,047543 (10.8)896 (17.9)0.5Public
Anonymous submission
TSN
7. using public detections
22.2
48.2
±8.7
45.719.9% 38.9% 8,44785,315665 (12.5)829 (15.6)0.8Public
Anonymous submission
GCRA
8. using public detections
20.3
48.2
±8.3
48.612.9% 41.1% 5,10488,586821 (16.0)1,117 (21.7)2.8Public
C.Ma, C.Yang, F.Yang, Y.Zhuang, Z.Zhang, H.Jia, D.Xie. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. In ICME 2018.
TripT
9. online method using public detections
20.8
48.1
±8.5
51.915.8% 40.2% 2,82791,210563 (11.3)1,143 (22.9)0.6Public
Anonymous submission
FWT
10. using public detections
23.3
47.8
±9.4
44.319.1% 38.2% 8,88685,487852 (16.0)1,534 (28.9)0.6Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MOTDT
11. online method using public detections
21.4
47.6
±8.2
50.915.2% 38.3% 9,25385,431792 (14.9)1,858 (35.0)20.6Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
NLLMPa
12. using public detections
16.8
47.6
±10.6
47.317.0% 40.4% 5,84489,093629 (12.3)768 (15.0)8.3Public
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
Adaptation
13. using public detections
14.4
47.6
±10.6
47.417.0% 40.4% 5,78389,168627 (12.3)761 (14.9)2.5Public
Anonymous submission
JCSTD
14. online method using public detections
26.8
47.4
±8.3
41.114.4% 36.4% 8,07686,6381,266 (24.1)2,697 (51.4)8.8Public
Anonymous submission
eHAF16
15. using public detections
19.1
47.2
±16.8
52.418.6% 42.8% 12,58683,107542 (10.0)787 (14.5)0.5Public
TCSVT-02141-2018
AMIR
16. online method using public detections
21.8
47.2
±7.7
46.314.0% 41.6% 2,68192,856774 (15.8)1,675 (34.1)1.0Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
MCjoint
17. using public detections
18.3
47.1
±10.8
52.320.4% 46.9% 6,70389,368370 (7.3)598 (11.7)0.6Public
M. Keuper, S. Tang, Z. Yu, B. Andres, T. Brox, B. Schiele. A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects. In CoRR, 2016.
IMWIS
18. using public detections
23.3
47.0
±9.3
41.816.2% 41.4% 4,84290,901868 (17.3)904 (18.0)0.7Public
TCSVT-02160-2018
NOMT
19. using public detections
16.8
46.4
±9.9
53.318.3% 41.4% 9,75387,565359 (6.9)504 (9.7)2.6Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
JMC
20. using public detections
21.6
46.3
±9.0
46.315.5% 39.7% 6,37390,914657 (13.1)1,114 (22.2)0.8Public
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
STAM16
21. online method using public detections
27.7
46.0
±9.1
50.014.6% 43.6% 6,89591,117473 (9.5)1,422 (28.4)0.2Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
RAR16pub
22. online method using public detections
27.9
45.9
±9.7
48.813.2% 41.9% 6,87191,173648 (13.0)1,992 (39.8)0.9Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
MHT_DAM
23. using public detections
22.4
45.8
±8.9
46.116.2% 43.2% 6,41291,758590 (11.9)781 (15.7)0.8Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
MTDF
24. online method using public detections
32.6
45.7
±11.2
40.114.1% 36.4% 12,01884,9701,987 (37.2)3,377 (63.2)1.5Public
Anonymous submission
INTERA_MOT
25. using public detections
19.8
45.4
±8.6
47.718.1% 38.7% 13,40785,547600 (11.3)930 (17.5)4.3Public
L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao, T. Huang. Interacting Tracklets for Multi-object Tracking. In IEEE Transactions on Image Processing, 2018.
EDMT
26. using public detections
20.4
45.3
±9.1
47.917.0% 39.9% 11,12287,890639 (12.3)946 (18.3)1.8Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
DCCRF16
27. online method using public detections
30.6
44.8
±9.8
39.714.1% 42.3% 5,61394,133968 (20.0)1,378 (28.5)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
TBSS
28. online method using public detections
30.5
44.6
±9.3
42.612.3% 43.9% 4,13696,128790 (16.7)1,419 (30.0)3.0Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
TripletT
29. online method using public detections
28.3
44.6
±9.7
48.812.6% 46.6% 2,72597,948422 (9.1)1,093 (23.6)0.1Public
Anonymous submission
QuadMOT16
30. using public detections
30.0
44.1
±9.4
38.314.6% 44.9% 6,38894,775745 (15.5)1,096 (22.8)1.8Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
CDA_DDALv2
31. online method using public detections
29.8
43.9
±7.8
45.110.7% 44.4% 6,45095,175676 (14.1)1,795 (37.6)0.5Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
CSAHD
32. online method using public detections
31.2
43.7
±11.6
45.710.5% 46.1% 8,31893,273984 (20.1)2,164 (44.3)7.0Public
Anonymous submission
STbase
33. using public detections
31.7
43.7
±9.2
50.815.2% 43.0% 8,89193,036662 (13.5)1,844 (37.7)0.4Public
Anonymous submission
deepS2
34. using public detections
28.3
43.6
±8.1
40.415.4% 41.9% 8,81993,095871 (17.8)851 (17.4)0.7Public
ID 32
LFNF16
35. using public detections
31.7
43.6
±11.0
41.613.3% 45.7% 6,61695,363836 (17.5)938 (19.7)0.6Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
SAD_T
36. online method using public detections
34.4
43.4
±16.2
44.011.7% 59.3% 15,34187,086763 (14.6)1,832 (35.1)11.4Public
Anonymous submission
oICF
37. online method using public detections
31.0
43.2
±10.2
49.311.3% 48.5% 6,65196,515381 (8.1)1,404 (29.8)0.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
TTAR
38. using public detections
33.7
42.2
±8.0
37.210.4% 47.8% 4,87299,550909 (20.0)945 (20.8)19.7Public
Anonymous submission
MHT_bLSTM6
39. using public detections
30.1
42.1
±9.7
47.814.9% 44.4% 11,63793,172753 (15.4)1,156 (23.6)1.8Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
TBNMF16
40. online method using public detections
36.1
42.0
±9.2
37.510.4% 44.9% 4,96699,7781,085 (24.0)1,400 (30.9)4.5Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
LINF1
41. using public detections
29.8
41.0
±9.5
45.711.6% 51.3% 7,89699,224430 (9.4)963 (21.1)4.2Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
VOFNet
42. online method using public detections
33.5
40.9
±8.3
46.79.7% 47.0% 4,750102,277684 (15.6)4,310 (98.2)24.9Public
Anonymous submission
PRT
43. online method using public detections
33.5
40.8
±13.0
44.213.7% 38.3% 15,14391,7921,051 (21.2)2,210 (44.5)6.2Public
Anonymous submission
FullTest
44. online method using public detections
32.4
40.7
±32.6
44.811.6% 42.3% 14,35492,6501,136 (23.1)3,864 (78.6)236.8Public
Anonymous submission
AM_ADM
45. online method using public detections
34.8
40.1
±10.1
43.87.1% 46.2% 8,50399,891789 (17.5)1,736 (38.4)1.4Public
Anonymous submission
ReIDT
46. online method using public detections
34.4
40.0
±10.3
43.313.6% 38.1% 17,08891,2411,064 (21.3)2,274 (45.5)6.5Public
Anonymous submission
TST_PLS
47. online method using public detections
41.3
39.7
±11.1
43.36.7% 47.4% 8,447100,728783 (17.5)1,730 (38.7)0.7Public
Anonymous submission
SDMT
48. online method using public detections
31.6
39.6
±8.3
42.311.7% 49.1% 11,13098,343602 (13.1)772 (16.8)19.8Public
Anonymous submission
EAMTT_pub
49. online method using public detections
35.0
38.8
±8.5
42.47.9% 49.1% 8,114102,452965 (22.0)1,657 (37.8)11.8Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
OVBT
50. online method using public detections
45.6
38.4
±8.8
37.87.5% 47.3% 11,51799,4631,321 (29.1)2,140 (47.1)0.3Public
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
HAM_ACT16
51. online method using public detections
30.3
38.1
±8.2
43.37.8% 54.4% 6,976105,434418 (9.9)707 (16.8)8.0Public
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In arXiv:1805.10916, 2018.
GMMCP
52. using public detections
40.3
38.1
±7.8
35.58.6% 50.9% 6,607105,315937 (22.2)1,669 (39.5)0.5Public
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
Q_lc
53. online method using public detections
34.2
37.9
±10.3
48.314.2% 37.9% 19,33393,157697 (14.3)1,918 (39.2)0.3Public
Anonymous submission
YT16
54. online method using public detections
40.9
37.8
±8.8
31.18.8% 46.1% 4,384106,3652,655 (63.7)2,750 (66.0)12.1Public
Anonymous submission
LTTSC-CRF
55. using public detections
37.9
37.6
±9.9
42.19.6% 55.2% 11,969101,343481 (10.8)1,012 (22.8)0.6Public
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
JCmin_MOT
56. online method using public detections
32.3
36.7
±9.1
36.27.5% 54.4% 2,936111,890667 (17.3)831 (21.5)14.8Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
HISP_T
57. online method using public detections
41.8
35.9
±8.5
28.97.8% 50.1% 6,412107,9182,594 (63.6)2,298 (56.3)4.8Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
LP2D
58. using public detections
35.8
35.7
±10.1
34.28.7% 50.7% 5,084111,163915 (23.4)1,264 (32.4)49.3Public
MOT baseline: Linear programming on 2D image coordinates.
cm_test
59. online method using public detections
33.9
35.4
±20.2
40.36.5% 71.4% 4,427112,889402 (10.6)1,176 (30.9)1.6Public
Anonymous submission
DRT
60. online method using public detections
35.1
34.7
±11.4
41.16.3% 61.8% 6,992111,617460 (11.9)1,127 (29.1)6.2Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TDP
61. online method using public detections
38.8
33.9
±10.2
40.46.2% 62.2% 6,709113,249480 (12.7)1,105 (29.2)9.7Public
Anonymous submission
TBD
62. using public detections
47.0
33.7
±9.2
0.07.2% 54.2% 5,804112,5872,418 (63.2)2,252 (58.9)1.3Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
CRC_MB
63. using public detections
40.5
33.6
±10.2
40.17.5% 53.0% 5,882112,5882,633 (68.8)5,483 (143.3)8.5Public
Anonymous submission
GM_PHD_N1T
64. online method using public detections
42.6
33.3
±8.9
25.55.5% 56.0% 1,750116,4523,499 (96.8)3,594 (99.5)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD Filter for Multiple Target, Multiple Type Visual Tracking. In CoRR, 2017.
CEM
65. using public detections
38.3
33.2
±7.9
0.07.8% 54.4% 6,837114,322642 (17.2)731 (19.6)0.3Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
DWET
66. online method using public detections
37.8
32.2
±10.4
38.36.2% 63.0% 7,297115,780603 (16.5)1,184 (32.4)11.3Public
Anonymous submission
CppSORT
67. online method using public detections
39.8
31.5
±9.0
27.74.3% 59.9% 3,048120,2781,587 (46.6)2,239 (65.8)687.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
GMPHD_HDA
68. online method using public detections
34.3
30.5
±6.9
33.44.6% 59.7% 5,169120,970539 (16.0)731 (21.7)13.6Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
SMOT
69. using public detections
53.8
29.7
±7.3
0.05.3% 47.7% 17,426107,5523,108 (75.8)4,483 (109.3)0.2Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
GCK
70. online method using public detections
45.6
28.7
±8.5
30.63.4% 51.0% 21,436106,4242,217 (53.3)3,277 (78.7)25.1Public
Anonymous submission
TrackerAvg RankMOTAIDF1MTMLFPFNID Sw.FragHzDetector
JPDA_m
71. using public detections
34.2
26.2
±6.1
0.04.1% 67.5% 3,689130,549365 (12.9)638 (22.5)22.2Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
DP_NMS
72. using public detections
33.3
26.2
±9.3
31.24.1% 67.5% 3,689130,557365 (12.9)638 (22.5)5.9Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.

Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(52.0% MOTA)

MOT16-06

MOT16-06

(42.8% MOTA)

MOT16-07

MOT16-07

(37.5% MOTA)

...

...

MOT16-08

MOT16-08

(29.2% MOTA)

MOT16-14

MOT16-14

(23.9% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
Avg Rank lower 1 This is the rank of each tracker averaged over all present evaluation measures.
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.