MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.


Showing only entries that use public detections!


Due to a minor bug in the export script, all results were re-evaluated on April 11, 2016. Here is the old snapshot of the leaderboard.


Benchmark Statistics

TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
Response
1. using public detections
62.0
±11.2
63.837.7% 20.7% 18,30850,039909 (12.5)2,009 (27.7)2.0Public
Anonymous submission
dpt_dpt
2. using public detections
61.3
±10.7
60.432.1% 18.6% 12,41157,481739 (10.8)1,960 (28.6)148.0Public
Anonymous submission
Lif_T
3. using public detections
61.3
±11.0
64.727.0% 34.0% 4,84465,401389 (6.1)1,034 (16.1)0.5Public
Anonymous submission
TrkReid
4. using public detections
60.2
±10.4
54.330.7% 20.2% 11,36859,5371,594 (23.7)1,957 (29.1)24.7Public
Anonymous submission
ISE_MOT16
5. online method using public detections
60.1
±8.5
56.926.1% 29.1% 6,96465,044739 (11.5)951 (14.8)6.9Public
MIFT
DS_v2
6. using public detections
59.3
±12.9
57.524.2% 29.1% 7,46565,810887 (13.9)2,738 (42.8)39.4Public
Anonymous submission
DpTrack
7. using public detections
59.3
±18.7
52.827.4% 24.6% 8,56663,6032,045 (31.4)1,555 (23.9)10.4Public
Anonymous submission
DN_MOT
8. online method using public detections
58.8
±9.3
60.830.7% 18.3% 18,20855,3661,626 (23.4)2,904 (41.7)22.3Public
Anonymous submission
MPNTrack16
9. using public detections
58.6
±10.3
61.727.3% 34.0% 4,94970,252354 (5.8)684 (11.1)11.9Public
Anonymous submission
SORT_Alex
10. online method using public detections
58.4
±11.4
56.324.2% 32.9% 3,43671,846604 (10.0)808 (13.3)7.6Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
ReTrack16
11. using public detections
57.0
±12.3
54.221.9% 34.3% 4,44673,258688 (11.5)1,543 (25.8)0.8Public
Anonymous submission
FFT16
12. online method using public detections
56.5
±11.2
50.123.6% 29.4% 5,83171,8251,635 (27.0)1,607 (26.5)1.8Public
Anonymous submission
M_track
13. online method using public detections
56.4
±11.9
54.622.1% 32.7% 4,69473,5931,139 (19.1)1,411 (23.7)4.7Public
Anonymous submission
MHT___ReID
14. using public detections
56.4
±11.6
54.239.7% 17.4% 23,79154,1691,478 (21.0)1,547 (22.0)0.5Public
Anonymous submission
Tracktor++v2
15. online method using public detections
56.2
±11.4
54.920.7% 35.8% 2,39476,844617 (10.7)1,068 (18.5)1.6Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
TrajTrack
16. online method using public detections
56.1
±11.2
56.921.5% 35.4% 3,69175,628742 (12.7)1,009 (17.2)0.5Public
Anonymous submission
MTT_TPR
17. using public detections
54.9
±11.7
53.118.7% 34.8% 4,13076,6731,447 (25.0)3,693 (63.7)6.7Public
Anonymous submission
TARCA
18. online method using public detections
54.8
±12.5
57.323.1% 38.3% 6,67975,244487 (8.3)828 (14.1)7.6Public
Anonymous submission
moT_
19. using public detections
54.8
±8.7
53.520.3% 32.0% 6,18575,526718 (12.3)2,612 (44.6)23.1Public
Anonymous submission
Tracktor++
20. online method using public detections
54.4
±12.0
52.519.0% 36.9% 3,28079,149682 (12.1)1,480 (26.2)1.5Public
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
GNN_tracktor
21. online method using public detections
53.9
±11.1
53.716.7% 39.4% 2,51480,892631 (11.3)894 (16.1)2.2Public
Anonymous submission
retrack
22. online method using public detections
53.9
±13.0
52.720.3% 32.3% 6,99976,251818 (14.1)2,613 (44.9)22.3Public
Anonymous submission
HDTR
23. using public detections
53.6
±8.7
46.621.2% 37.0% 4,71479,353618 (10.9)833 (14.7)3.6Public
M. Babaee, A. Athar, G. Rigoll. Multiple People Tracking Using Hierarchical Deep Tracklet Re-identification. In arXiv preprint arXiv:1811.04091, 2018.
MLT
24. online method using public detections
52.8
±8.2
62.621.1% 42.4% 5,36280,444299 (5.4)702 (12.6)5.9Public
Anonymous submission
TCT5
25. online method using public detections
51.9
±13.9
51.825.4% 24.9% 15,62270,5571,494 (24.4)2,466 (40.2)4.7Public
Anonymous submission
TPM
26. using public detections
51.3
±9.2
47.918.7% 40.8% 2,70185,504569 (10.7)707 (13.3)0.8Public
Anonymous submission
MOTHYPER
27. using public detections
50.9
±9.1
47.419.4% 39.4% 4,86684,022619 (11.5)814 (15.1)4.8Public
Anonymous submission
UTA
28. online method using public detections
50.5
±7.9
52.817.8% 33.7% 7,58781,924685 (12.4)2,184 (39.7)5.0Public
Anonymous submission
MOTPP16
29. using public detections
50.5
±9.7
47.219.6% 39.4% 5,93983,694638 (11.8)823 (15.2)3.0Public
Anonymous submission
PV
30. online method using public detections
50.4
±10.1
50.814.9% 38.9% 2,60086,7801,061 (20.2)3,181 (60.7)7.3Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
TTL16
31. online method using public detections
50.4
±10.3
50.117.4% 39.9% 8,49181,156807 (14.5)1,251 (22.5)2.2Public
Anonymous submission
MOTHPCLEAN
32. using public detections
50.4
±9.7
47.019.1% 39.5% 5,33284,505657 (12.2)862 (16.1)11.8Public
Anonymous submission
CRFTrack16
33. using public detections
50.3
±7.9
54.418.3% 35.7% 7,14882,746702 (12.9)1,387 (25.4)1.5Public
Anonymous submission
CRF_TRACK
34. using public detections
50.3
±7.9
54.418.3% 35.7% 7,14882,746702 (12.9)1,387 (25.4)1.5Public
Anonymous submission
ENFT16
35. using public detections
50.3
±8.3
55.019.2% 39.8% 8,34181,843490 (8.9)754 (13.7)0.4Public
BUAA
HTBT16
36. using public detections
50.3
±8.3
55.019.2% 39.8% 8,34181,843490 (8.9)754 (13.7)0.2Public
Anonymous submission
MOT_FILTER
37. using public detections
50.2
±12.9
46.817.9% 39.7% 5,26784,812664 (12.4)978 (18.3)11.8Public
Anonymous submission
TLO
38. online method using public detections
50.1
±9.9
48.116.3% 40.7% 5,58284,629786 (14.7)1,294 (24.1)25.3Public
Anonymous submission
MEN
39. online method using public detections
50.0
±9.1
52.815.0% 37.0% 6,11784,271706 (13.1)1,797 (33.4)2.0Public
Anonymous submission
SCNet
40. online method using public detections
50.0
±8.9
51.115.5% 34.1% 10,52679,755866 (15.4)2,141 (38.1)0.3Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
pairwise16
41. using public detections
50.0
±65.9
52.419.4% 38.7% 10,99579,568628 (11.1)939 (16.7)22.3Public
Anonymous submission
ENFT
42. using public detections
50.0
±8.2
54.617.8% 41.1% 8,21482,541479 (8.8)724 (13.2)22.3Public
Anonymous submission
RTT
43. online method using public detections
49.9
±8.0
49.319.0% 32.8% 9,92780,406955 (17.1)2,247 (40.2)1.8Public
Anonymous submission
MMHT16
44. online method using public detections
49.9
±9.8
47.316.2% 40.7% 6,11084,455823 (15.3)1,289 (24.0)12.4Public
Anonymous submission
OMHT16
45. online method using public detections
49.8
±9.9
46.716.1% 40.4% 6,24484,342888 (16.5)1,332 (24.8)12.4Public
Anonymous submission
CMT16
46. using public detections
49.8
±9.0
59.216.6% 43.6% 9,22981,882365 (6.6)617 (11.2)6.3Public
#Submission: TIP-21190-2019
NOTA
47. using public detections
49.8
±8.3
55.317.9% 37.7% 7,24883,614614 (11.3)1,372 (25.3)19.2Public
L. Chen, H. Ai, R. Chen, Z. Zhuang. Aggregate Tracklet Appearance Features for Multi-Object Tracking. In IEEE Signal Processing Letters, 2019.
TLO16
48. online method using public detections
49.8
±10.0
47.816.6% 40.6% 6,08584,623782 (14.6)1,278 (23.8)12.4Public
Anonymous submission
Seq2Seq
49. using public detections
49.8
±9.5
44.615.0% 40.6% 2,83587,813868 (16.7)1,093 (21.1)2.9Public
Anonymous submission
siameseCos
50. using public detections
49.4
±8.4
49.819.1% 39.4% 6,28185,384679 (12.8)823 (15.5)0.8Public
In preparation
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
STCG
51. using public detections
49.3
±8.6
52.016.2% 41.4% 6,88684,979515 (9.6)775 (14.5)22.3Public
Anonymous submission
HCC
52. using public detections
49.3
±10.2
50.717.8% 39.9% 5,33386,795391 (7.5)535 (10.2)0.8Public
L. Ma, S. Tang, M. Black, L. Gool. Customized Multi-Person Tracker. In Computer Vision -- ACCV 2018, 2018.
LSST16O
53. online method using public detections
49.2
±10.2
56.513.4% 41.4% 7,18784,875606 (11.3)2,497 (46.7)2.0Public
Anonymous submission
eTC
54. using public detections
49.2
±9.1
56.117.3% 40.3% 8,40083,702606 (11.2)882 (16.3)0.7Public
G. Wang, Y. Wang, H. Zhang, R. Gu, J. Hwang. Exploit the connectivity: Multi-object tracking with trackletnet. In Proceedings of the 27th ACM International Conference on Multimedia, 2019.
MOTHP
55. using public detections
49.1
±9.1
46.920.0% 38.9% 9,03883,031679 (12.5)850 (15.6)11.8Public
Anonymous submission
AFN
56. using public detections
49.0
±10.2
48.219.1% 35.7% 9,50882,506899 (16.4)1,383 (25.3)0.6Public
H. Shen, L. Huang, C. Huang, W. Xu. Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. In CoRR, 2018.
CRF_RNN16
57. using public detections
49.0
±7.2
53.918.1% 35.8% 8,49583,838621 (11.5)1,252 (23.2)1.5Public
Anonymous submission
RFS
58. online method using public detections
49.0
±14.5
50.315.3% 43.0% 9,95382,394701 (12.8)1,663 (30.3)1.0Public
Anonymous submission
DAST
59. online method using public detections
48.9
±8.4
53.215.2% 36.2% 9,98782,427838 (15.3)1,936 (35.3)8.7Public
Anonymous submission
KCF16
60. online method using public detections
48.8
±9.6
47.215.8% 38.1% 5,87586,567906 (17.3)1,116 (21.2)0.1Public
P. Chu, H. Fan, C. Tan, H. Ling. Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment. In WACV, 2019.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
LMP
61. using public detections
48.8
±9.8
51.318.2% 40.1% 6,65486,245481 (9.1)595 (11.3)0.5Public
S. Tang, M. Andriluka, B. Andres, B. Schiele. Multiple People Tracking with Lifted Multicut and Person Re-identification. In CVPR, 2017.
DeepMP16
62. using public detections
48.7
±10.3
50.115.0% 43.6% 4,11188,862535 (10.4)873 (17.0)9.9Public
Anonymous submission
TLMHT
63. using public detections
48.7
±8.6
55.315.7% 44.5% 6,63286,504413 (7.9)642 (12.2)4.8Public
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
STRN_MOT16
64. using public detections
48.5
±8.5
53.917.0% 34.9% 9,03884,178747 (13.9)2,919 (54.2)13.5Public
J. Xu, Y. Cao, Z. Zhang, H. Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. In ICCV, 2019.
MOTPPF
65. using public detections
48.4
±8.8
48.519.1% 39.8% 9,15284,266595 (11.1)802 (14.9)11.8Public
Anonymous submission
MOTPP
66. using public detections
48.3
±8.7
45.418.6% 40.1% 7,37886,181661 (12.5)834 (15.8)11.8Public
Anonymous submission
AOReid
67. online method using public detections
48.2
±8.7
50.815.3% 36.8% 10,28383,301821 (15.1)1,963 (36.1)11.2Public
Anonymous submission
GCRA
68. using public detections
48.2
±8.3
48.612.9% 41.1% 5,10488,586821 (16.0)1,117 (21.7)2.8Public
C. Ma, C. Yang, F. Yang, Y. Zhuang, Z. Zhang, H. Jia, X. Xie. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. In ICME, 2018.
SRPN16
69. online method using public detections
48.2
±8.5
51.314.2% 36.8% 7,76785,973790 (14.9)2,006 (38.0)1.4Public
Anonymous submission
FWT
70. using public detections
47.8
±9.4
44.319.1% 38.2% 8,88685,487852 (16.0)1,534 (28.9)0.6Public
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MOTDT
71. online method using public detections
47.6
±8.2
50.915.2% 38.3% 9,25385,431792 (14.9)1,858 (35.0)20.6Public
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.
NLLMPa
72. using public detections
47.6
±10.6
47.317.0% 40.4% 5,84489,093629 (12.3)768 (15.0)8.3Public
E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres. Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications. In CVPR, 2017.
WOLF
73. online method using public detections
47.5
±8.5
41.914.8% 35.7% 10,93983,4281,276 (23.5)2,480 (45.7)31.3Public
Anonymous submission
CoCT16
74. online method using public detections
47.5
±7.4
53.219.4% 38.7% 16,97178,044682 (11.9)1,302 (22.8)19.3Public
Anonymous submission
EAGS16
75. using public detections
47.4
±10.4
50.117.3% 42.7% 8,36986,931575 (11.0)913 (17.5)197.3Public
H. Sheng, X. Zhang, Y. Zhang, Y. Wu, J. Chen. Enhanced Association with Supervoxels in Multiple Hypothesis Tracking. In IEEE Access, 2018.
JCSTD
76. online method using public detections
47.4
±8.3
41.114.4% 36.4% 8,07686,6381,266 (24.1)2,697 (51.4)8.8Public
W. Tian, M. Lauer, L. Chen. Online Multi-Object Tracking Using Joint Domain Information in Traffic Scenarios. In IEEE Transactions on Intelligent Transportation Systems, 2019.
ASTT
77. using public detections
47.2
±9.6
44.316.3% 41.6% 4,68090,877633 (12.6)814 (16.2)0.5Public
Yi Tao el al., “Adaptive Spatio-temporal Model Based Multiple Object Tracking Considering a Moving Camera[C]”, International Conference on Universal Village (UV), 2018.
eHAF16
78. using public detections
47.2
±16.8
52.418.6% 42.8% 12,58683,107542 (10.0)787 (14.5)0.5Public
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
AMIR
79. online method using public detections
47.2
±8.4
46.314.0% 41.6% 2,68192,856774 (15.8)1,675 (34.1)1.0Public
A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.
MCjoint
80. using public detections
47.1
±10.8
52.320.4% 46.9% 6,70389,368370 (7.3)598 (11.7)0.6Public
}@article{DBLP:journals/corr/KeuperTYABS16, author = {Margret Keuper and Siyu Tang and Zhongjie Yu and Bjoern Andres and Thomas Brox and Bernt Schiele}, title = {A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects}, journal = {CoRR}, volume = {abs/1607.06317}, year = {2016}, url = {http://arxiv.org/abs/1607.06317}, timestamp = {Wed, 07 Jun 2017 14:41:31 +0200}, biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/KeuperTYABS16}, bibsource = {dblp computer science bibliography, http://dblp.org} }
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
YOONKJ16
81. online method using public detections
47.0
±8.4
50.116.5% 41.8% 7,90188,179627 (12.1)945 (18.3)3.5Public
K. YOON, J. GWAK, Y. SONG, Y. YOON, M. JEON. OneShotDA: Online Multi-object Tracker with One-shot-learning-based Data Association. In IEEE Access, 2020.
NOMT
82. using public detections
46.4
±9.9
53.318.3% 41.4% 9,75387,565359 (6.9)504 (9.7)2.6Public
W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
JMC
83. using public detections
46.3
±9.0
46.315.5% 39.7% 6,37390,914657 (13.1)1,114 (22.2)0.8Public
S. Tang, B. Andres, M. Andriluka, B. Schiele. Multi-Person Tracking by Multicuts and Deep Matching. In BMTT, 2016.
DD_TAMA16
84. online method using public detections
46.2
±8.4
49.414.1% 44.0% 5,12692,367598 (12.1)1,127 (22.8)6.5Public
Y. Yoon, D. Kim, K. Yoon, Y. Song, M. Jeon. Online Multiple Pedestrian Tracking using Deep Temporal Appearance Matching Association. In arXiv:1907.00831, 2019.
DMAN
85. online method using public detections
46.1
±11.1
54.817.4% 42.7% 7,90989,874532 (10.5)1,616 (31.9)0.3Public
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018.
STAM16
86. online method using public detections
46.0
±9.1
50.014.6% 43.6% 6,89591,117473 (9.5)1,422 (28.4)0.2Public
Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, N. Yu. Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
deepS2
87. using public detections
46.0
±8.2
46.515.5% 42.6% 5,12492,697693 (14.1)759 (15.4)0.7Public
ID 32
RAR16pub
88. online method using public detections
45.9
±9.7
48.813.2% 41.9% 6,87191,173648 (13.0)1,992 (39.8)0.9Public
K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.
MHT_DAM
89. using public detections
45.8
±8.9
46.116.2% 43.2% 6,41291,758590 (11.9)781 (15.7)0.8Public
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
MTDF
90. online method using public detections
45.7
±11.2
40.114.1% 36.4% 12,01884,9701,987 (37.2)3,377 (63.2)1.5Public
Z. Fu, F. Angelini, J. Chambers, S. Naqvi. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. In IEEE Transactions on Multimedia, 2019.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
INTERA_MOT
91. using public detections
45.4
±8.6
47.718.1% 38.7% 13,40785,547600 (11.3)930 (17.5)4.3Public
L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao, T. Huang. Interacting Tracklets for Multi-object Tracking. In IEEE Transactions on Image Processing, 2018.
EDMT
92. using public detections
45.3
±9.1
47.917.0% 39.9% 11,12287,890639 (12.3)946 (18.3)1.8Public
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
DCCRF16
93. online method using public detections
44.8
±9.8
39.714.1% 42.3% 5,61394,133968 (20.0)1,378 (28.5)0.1Public
H. Zhou, W. Ouyang, J. Cheng, X. Wang, H. Li. Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018.
TBSS
94. online method using public detections
44.6
±9.3
42.612.3% 43.9% 4,13696,128790 (16.7)1,419 (30.0)3.0Public
X. Zhou, P. Jiang, Z. Wei, H. Dong, F. Wang. Online Multi-Object Tracking with Structural Invariance Constraint. In BMVC, 2018.
OTCD_1
95. online method using public detections
44.4
±10.8
45.611.6% 47.6% 5,75994,927759 (15.8)1,787 (37.3)17.6Public
Q. Liu, B. Liu, Y. Wu, W. Li, N. Yu. Real-Time Online Multi-Object Tracking in Compressed Domain. In IEEE Access, 2019.
QuadMOT16
96. using public detections
44.1
±9.4
38.314.6% 44.9% 6,38894,775745 (15.5)1,096 (22.8)1.8Public
J. Son, M. Baek, M. Cho, B. Han. Multi-Object Tracking with Quadruplet Convolutional Neural Networks. In CVPR, 2017.
SRPN
97. online method using public detections
44.0
±10.7
36.615.5% 45.7% 18,78482,3181,047 (19.1)1,118 (20.4)3.9Public
Anonymous submission
CDA_DDALv2
98. online method using public detections
43.9
±7.8
45.110.7% 44.4% 6,45095,175676 (14.1)1,795 (37.6)0.5Public
S. Bae and K. Yoon, Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , In IEEE TPAMI, 2017.
LFNF16
99. using public detections
43.6
±11.0
41.613.3% 45.7% 6,61695,363836 (17.5)938 (19.7)0.6Public
Sheng H, Hao L, Chen J, et al. Robust Local Effective Matching Model for Multi-Target Tracking. In PCM, 2017
oICF
100. online method using public detections
43.2
±10.2
49.311.3% 48.5% 6,65196,515381 (8.1)1,404 (29.8)0.4Public
H. Kieritz, S. Becker, W. Hübner, M. Arens. Online Multi-Person Tracking using Integral Channel Features. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016, 2016.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
MHT_bLSTM6
101. using public detections
42.1
±9.7
47.814.9% 44.4% 11,63793,172753 (15.4)1,156 (23.6)1.8Public
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018.
TestUnsup
102. online method using public detections
41.5
±9.0
44.913.7% 43.5% 12,59693,404643 (13.2)796 (16.3)19.7Public
Multi Object Tracking using Deep Structural Cost Minimization in Data Association
OST16
103. online method using public detections
41.5
±9.2
39.110.7% 45.6% 5,91999,7091,056 (23.3)1,487 (32.8)4.7Public
Anonymous submission
LINF1
104. using public detections
41.0
±9.5
45.711.6% 51.3% 7,89699,224430 (9.4)963 (21.1)4.2Public
L. Fagot-Bouquet, R. Audigier, Y. Dhome, F. Lerasle. Improving Multi-Frame Data Association with Sparse Representations for Robust Near-Online Multi-Object Tracking. In ECCV, 2016.
PHD_GSDL16
105. online method using public detections
41.0
±8.9
43.111.3% 41.5% 6,49899,2571,810 (39.7)3,650 (80.1)8.3Public
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018.
GMPHD_ReId
106. online method using public detections
40.4
±9.3
49.711.2% 43.3% 6,572101,266792 (17.8)2,529 (56.9)31.6Public
N. Baisa. Occlusion-robust Online Multi-object Visual Tracking using a GM-PHD Filter with a CNN-based Re-identification. In , 2019.
PHD_T
107. online method using public detections
40.4
±9.1
49.711.2% 43.3% 6,572101,266792 (17.8)2,529 (56.9)9.9Public
Anonymous submission
PMPTracker
108. online method using public detections
40.3
±11.7
38.210.4% 42.0% 10,07197,5241,343 (28.9)2,764 (59.4)148.0Public
Light version of PTZ camera Mutiple People Tracker
AM_ADM
109. online method using public detections
40.1
±10.1
43.87.1% 46.2% 8,50399,891789 (17.5)1,736 (38.4)5.8Public
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018.
D_cost16
110. online method using public detections
39.9
±9.1
35.38.7% 50.2% 1,133107,586790 (19.3)824 (20.1)8.5Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
SDMT
111. online method using public detections
39.6
±8.3
42.311.7% 49.1% 11,13098,343602 (13.1)772 (16.8)19.8Public
M. Thoreau, N. Kottege. Deep Similarity Metric Learning for Real-Time Pedestrian Tracking. In arXiv, 2018.
EAMTT_pub
112. online method using public detections
38.8
±8.5
42.47.9% 49.1% 8,114102,452965 (22.0)1,657 (37.8)11.8Public
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro "Multi-target tracking with strong and weak detections" in BMTT ECCVw 2016
OVBT
113. online method using public detections
38.4
±8.8
37.87.5% 47.3% 11,51799,4631,321 (29.1)2,140 (47.1)0.3Public
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. In BMTT 2016, .
FTPLS
114. online method using public detections
38.2
±9.2
47.59.6% 44.0% 18,91593,051689 (14.1)2,006 (41.0)5.1Public
Anonymous submission
HAM_ACT16
115. online method using public detections
38.1
±8.2
43.37.8% 54.4% 6,976105,434418 (9.9)707 (16.8)8.0Public
GMMCP
116. using public detections
38.1
±7.8
35.58.6% 50.9% 6,607105,315937 (22.2)1,669 (39.5)0.5Public
A. Dehghan, S. Assari, M. Shah.. GMMCP-Tracker:Globally Optimal Generalized Maximum Multi Clique Problem for Multiple Object Tracking. In CVPR, 2015.
LTTSC-CRF
117. using public detections
37.6
±9.9
42.19.6% 55.2% 11,969101,343481 (10.8)1,012 (22.8)0.6Public
N. Le, A. Heili, M. Odobez. Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection. In ECCVw, 2016.
GoturnM16
118. online method using public detections
37.5
±7.5
25.18.4% 46.5% 17,74692,8673,277 (66.8)2,994 (61.0)3.9Public
Anonymous submission
HISP_DAL
119. online method using public detections
37.4
±9.0
30.57.6% 50.9% 3,222108,8652,101 (52.1)2,151 (53.4)3.3Public
N. Baisa. Robust Online Multi-target Visual Tracking using a HISP Filter with Discriminative Deep Appearance Learning. In CoRR, 2019.
JCmin_MOT
120. online method using public detections
36.7
±9.1
36.27.5% 54.4% 2,936111,890667 (17.3)831 (21.5)14.8Public
M. Abhijeet Boragule. Joint Cost Minimization for Multi-Object Tracking. In 2017 IEEE International Conference on Advanced Vide and Signale Based Surveillance, 2017.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
SCTrack_3L
121. using public detections
36.6
±9.7
36.529.0% 15.8% 35,25976,6533,600 (62.1)3,724 (64.3)11.8Public
Anonymous submission
HISP_T
122. online method using public detections
35.9
±8.5
28.97.8% 50.1% 6,412107,9182,594 (63.6)2,298 (56.3)4.8Public
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018.
LP2D
123. using public detections
35.7
±10.1
34.28.7% 50.7% 5,084111,163915 (23.4)1,264 (32.4)49.3Public
MOT baseline: Linear programming on 2D image coordinates.
GM_PHD_DAL
124. online method using public detections
35.1
±9.1
26.67.0% 51.4% 2,350111,8864,047 (104.8)5,338 (138.2)3.5Public
N. Baisa. Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning. In 2019 22th International Conference on Information Fusion (FUSION), 2019.
AEb
125. using public detections
34.3
±10.4
37.99.9% 58.8% 1,960117,444382 (10.7)742 (20.9)22.3Public
Anonymous submission
GM_PHD_Dl
126. online method using public detections
34.3
±9.1
20.57.1% 51.5% 2,350111,8865,605 (145.1)5,357 (138.7)3.5Public
Anonymous submission
RNN_A_P
127. online method using public detections
34.0
±8.6
33.77.9% 51.0% 8,562109,2692,479 (61.9)3,393 (84.7)19.7Public
Anonymous submission
GM_PHD_e17
128. online method using public detections
33.8
±8.9
25.36.3% 54.9% 1,766115,1303,778 (102.5)3,874 (105.1)3.3Public
Anonymous submission
TBD
129. using public detections
33.7
±27.4
0.07.2% 54.2% 5,804112,5872,418 (63.2)2,252 (58.9)1.3Public
A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.
KVIOU16
130. using public detections
33.4
±9.7
32.65.9% 59.6% 2,764117,971760 (21.5)1,473 (41.7)29.6Public
Anonymous submission
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
GM_PHD_N1T
131. online method using public detections
33.3
±8.9
25.55.5% 56.0% 1,750116,4523,499 (96.8)3,594 (99.5)9.9Public
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019.
CppSORT
132. online method using public detections
31.5
±9.0
27.74.3% 59.9% 3,048120,2781,587 (46.6)2,239 (65.8)687.1Public
S. Murray. Real-Time Multiple Object Tracking - A Study on the Importance of Speed. In arXiv preprint arXiv:1709.03572, 2017.
LM_NN
133. using public detections
31.0
±7.2
31.57.4% 58.4% 2,451122,649678 (20.7)666 (20.3)3.0Public
ID NEUCOM-D-18-03230
GMPHD_HDA
134. online method using public detections
30.5
±6.9
33.44.6% 59.7% 5,169120,970539 (16.0)731 (21.7)13.6Public
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016.
SMOT
135. using public detections
29.7
±27.4
0.05.3% 47.7% 17,426107,5523,108 (75.8)4,483 (109.3)0.2Public
C. Dicle, O. Camps, M. Sznaier. The Way They Move: Tracking Targets with Similar Appearance. In ICCV, 2013.
DCOR
136. online method using public detections
28.3
±9.0
21.73.4% 63.9% 1,618128,345849 (28.7)2,592 (87.5)32.9Public
Anonymous submission
MHT_ReID
137. using public detections
27.1
±47.2
36.430.6% 31.4% 13,068118,8291,071 (30.8)1,141 (32.8)0.5Public
Anonymous submission
JPDA_m
138. using public detections
26.2
±27.4
0.04.1% 67.5% 3,689130,549365 (12.9)638 (22.5)22.2Public
H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, I. Reid. Joint Probabilistic Data Association Revisited. In ICCV, 2015.
DP_NMS
139. using public detections
26.2
±9.1
31.24.1% 67.5% 3,689130,557365 (12.9)638 (22.5)212.6Public
H. Pirsiavash, D. Ramanan, C. Fowlkes. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In CVPR, 2011.
CEM
140. using public detections
0.0
±0.1
0.10.0% 99.9% 7182,2470 (0.0)0 (0.0)5,919.0Public
A. Milan, S. Roth, K. Schindler. Continuous Energy Minimization for Multitarget Tracking. In IEEE TPAMI, 2014.
TrackerMOTAIDF1MTMLFPFNID Sw.FragHzDetector
test_trker
141. using public detections
0.0
±0.0
0.00.0% 100.0% 7182,3260 (nan)0 (nan)22.3Public
Anonymous submission
SequencesFramesTrajectoriesBoxes
75919759182326

Difficulty Analysis

Sequence difficulty (from easiest to hardest, measured by average MOTA)

MOT16-03

MOT16-03

(55.4% MOTA)

MOT16-06

MOT16-06

(46.8% MOTA)

MOT16-07

MOT16-07

(41.4% MOTA)

...

...

MOT16-08

MOT16-08

(31.6% MOTA)

MOT16-14

MOT16-14

(27.0% MOTA)


Evaluation Measures

Lower is better. Higher is better.
Measure Better Perfect Description
MOTA higher 100 % Multiple Object Tracking Accuracy [1]. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP higher 100 % Multiple Object Tracking Precision [1]. The misalignment between the annotated and the predicted bounding boxes.
IDF1 higher 100 % ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections.
FAF lower 0 The average number of false alarms per frame.
MT higher 100 % Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML lower 0 % Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed targets).
ID Sw. lower 0 The total number of identity switches. Please note that we follow the stricter definition of identity switches as described in [3].
Frag lower 0 The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz higher Inf. Processing speed (in frames per second excluding the detector) on the benchmark. The frequency is provided by the authors and not officially evaluated by the MOTChallenge.

Legend

Symbol Description
online method This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time.
using public detections This method used the provided detection set as input.
new This entry has been submitted or updated less than a week ago.

References:


[1] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.
[2] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.
[3] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.