ETH-Linthescher
Benchmark:
MOT15 |
Short name:
LP_SSVM
Detector:
Public
Description:
Min-cost network flow model with pairwise interactions; network cost is learned using structured SVM.
Reference:
S. Wang, C. Fowlkes. Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions. In International Journal of Computer Vision, 2016.
Last submitted:
April 20, 2015 (9 years ago)
Published:
April 21, 2015 at 04:22:07 CET
Submissions:
1
Project page / code:
n/a
Open source:
No
Hardware:
2.4GHz, 1 Core
Runtime:
41.3 Hz
Benchmark performance:
Sequence | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag |
MOT15 | 25.2 | 34.0 | 26.3 | 42 (5.8) | 382 (53.0) | 8,369 | 36,932 | 39.9 | 74.5 | 26.3 | 26.7 | 29.0 | 66.2 | 30.4 | 56.9 | 75.6 | 1.4 | 646 (16.2) | 849 (21.3) |
Detailed performance:
Sequence | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag |
ADL-Rundle-1 | 14.0 | 38.3 | 30.2 | 7 | 7 | 3,507 | 4,423 | 52.5 | 58.2 | 32.2 | 28.9 | 35.0 | 69.3 | 40.0 | 44.4 | 75.9 | 7.0 | 69 | 92 |
ADL-Rundle-3 | 28.0 | 36.9 | 28.5 | 4 | 10 | 1,855 | 5,388 | 47.0 | 72.0 | 27.1 | 30.5 | 29.0 | 69.0 | 36.2 | 55.4 | 76.2 | 3.0 | 81 | 83 |
AVG-TownCentre | 14.7 | 24.3 | 19.7 | 6 | 139 | 459 | 5,515 | 22.8 | 78.1 | 23.4 | 16.9 | 28.7 | 53.6 | 17.9 | 61.0 | 73.7 | 1.0 | 123 | 141 |
ETH-Crossing | 24.9 | 37.5 | 26.0 | 1 | 17 | 10 | 741 | 26.1 | 96.3 | 34.3 | 19.9 | 35.3 | 80.6 | 20.3 | 75.0 | 79.2 | 0.0 | 2 | 2 |
ETH-Jelmoli | 39.5 | 52.4 | 35.5 | 8 | 16 | 224 | 1,293 | 49.0 | 84.7 | 36.7 | 34.6 | 41.0 | 69.8 | 38.1 | 65.9 | 77.9 | 0.5 | 17 | 29 |
ETH-Linthescher | 15.6 | 23.5 | 21.0 | 5 | 157 | 41 | 7,483 | 16.2 | 97.2 | 35.7 | 12.4 | 37.9 | 76.0 | 12.5 | 75.3 | 79.4 | 0.0 | 11 | 15 |
KITTI-16 | 39.2 | 41.7 | 27.3 | 0 | 2 | 90 | 924 | 45.7 | 89.6 | 23.3 | 32.3 | 26.9 | 57.9 | 34.7 | 68.0 | 77.4 | 0.4 | 20 | 29 |
KITTI-19 | 28.2 | 39.6 | 27.1 | 4 | 18 | 810 | 2,955 | 44.7 | 74.7 | 25.3 | 29.6 | 29.7 | 58.7 | 33.3 | 55.6 | 71.9 | 0.8 | 70 | 162 |
PETS09-S2L2 | 41.5 | 27.9 | 21.1 | 3 | 7 | 629 | 4,803 | 50.2 | 88.5 | 12.9 | 35.2 | 13.9 | 59.8 | 37.6 | 66.2 | 74.6 | 1.4 | 212 | 249 |
TUD-Crossing | 60.0 | 55.0 | 38.3 | 4 | 2 | 48 | 375 | 66.0 | 93.8 | 31.8 | 46.2 | 38.6 | 57.3 | 49.8 | 70.8 | 77.7 | 0.2 | 18 | 20 |
Venice-1 | 17.8 | 31.9 | 25.0 | 0 | 7 | 696 | 3,032 | 33.6 | 68.7 | 28.0 | 22.5 | 28.9 | 76.9 | 26.1 | 53.4 | 76.6 | 1.5 | 23 | 27 |
Raw data: