TBD: Tracking By Detection


Video not available.

Rendering of new sequences is currently deactivated due to heavy load.

Rendering of new sequences is currently deactivated due to heavy load.

Rendering of new sequences is currently deactivated due to heavy load.

Rendering of new sequences is currently deactivated due to heavy load.

Rendering of new sequences is currently deactivated due to heavy load.

Rendering of new sequences is currently deactivated due to heavy load.

Rendering of new sequences is currently deactivated due to heavy load.

Rendering of new sequences is currently deactivated due to heavy load.

Rendering of new sequences is currently deactivated due to heavy load.

Rendering of new sequences is currently deactivated due to heavy load.

Rendering of new sequences is currently deactivated due to heavy load.

Benchmark:

MOT15 |

Short name:

TBD

Detector:

Public

Description:

This tracker operates in three stages: First, objects are detected in each frame independently using the DPM object detector by Ross Girshick and Pedro Felzenszwalb. Second, all detections with a positive score are associated to detections in the next frame using appearance and the bounding box overlap. We predict objects to the next frame using a Kalman filter and associate them globally via the Hungarian method for bipartite matching. To gap occlusions and missed detections, we also associate tracklets with each other in a first stage. Similarly to the second stage the Hungarian algorithm is employed but this time based on a occlusion sensitive appearance model and regression of the bounding boxes in one tracklet from the bounding boxes in the other tracklet. The algorithm outputs all associated tracklets with a lifetime longer than three frames.

The reported running time is dominated by the object detection stage.

Default parameters.

Reference:

A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D Traffic Scene Understanding from Movable Platforms. In Pattern Analysis and Machine Intelligence (PAMI), 2014.

Last submitted:

September 16, 2014 (10 years ago)

Published:

November 01, 2014 at 03:09:33 CET

Submissions:

1

Open source:

Yes

Hardware:

2.6 GHz, 16 Cores

Runtime:

inf Hz

Benchmark performance:

Sequence MOTA IDF1 HOTA MT ML FP FN Rcll Prcn AssA DetA AssRe AssPr DetRe DetPr LocA FAF ID Sw. Frag
MOT1515.90.00.046 (6.4)345 (47.9)14,94334,77743.464.10.00.00.00.00.00.00.02.61,939 (44.7)1,963 (45.2)

Detailed performance:

Sequence MOTA IDF1 HOTA MT ML FP FN Rcll Prcn AssA DetA AssRe AssPr DetRe DetPr LocA FAF ID Sw. Frag
ADL-Rundle-10.00.00.000000.00.00.00.00.00.00.00.00.00.000
ADL-Rundle-30.00.00.000000.00.00.00.00.00.00.00.00.00.000
AVG-TownCentre0.00.00.000000.00.00.00.00.00.00.00.00.00.000
ETH-Crossing0.00.00.000000.00.00.00.00.00.00.00.00.00.000
ETH-Jelmoli0.00.00.000000.00.00.00.00.00.00.00.00.00.000
ETH-Linthescher0.00.00.000000.00.00.00.00.00.00.00.00.00.000
KITTI-160.00.00.000000.00.00.00.00.00.00.00.00.00.000
KITTI-190.00.00.000000.00.00.00.00.00.00.00.00.00.000
PETS09-S2L20.00.00.000000.00.00.00.00.00.00.00.00.00.000
TUD-Crossing0.00.00.000000.00.00.00.00.00.00.00.00.00.000
Venice-10.00.00.000000.00.00.00.00.00.00.00.00.00.000

Raw data: