Click on a measure to sort the table accordingly. See below for a more detailed description.
Tracker | AP | MODA | MODP | FAF | TP | FP | FN | Rcll | Prcn | F1 | Hz |
SGT_det 1. | 0.90 | 86.6 | 82.4 | 1.3 | 106,849 | 7,688 | 7,715 | 93.3 | 93.3 | 93.3 | 20.8 |
J. Hyun, M. Kang, D. Wee, D. Yeung. Detection recovery in online multi-object tracking with sparse graph tracker. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023. | |||||||||||
SeedDet 2. | 0.90 | 81.8 | 82.8 | 2.3 | 107,291 | 13,631 | 7,273 | 93.7 | 88.7 | 91.1 | 8.2 |
seedland multi-target detection | |||||||||||
SW_YoloX_det 3. | 0.90 | 86.4 | 83.0 | 1.0 | 105,082 | 6,082 | 9,482 | 91.7 | 94.5 | 93.1 | 12.6 |
C.-Y. Tsai, R.-Y. Wang and Y.-C. Chiu, “SW-YOLOX: A Real-Time Pedestrian Detection System Based on Sliding Window-Mixed Attention Mechanism in YOLOX Lightweight Network,” Neurocomputing, accepted for publication, DOI: https://doi.org/10.1016/j.neucom.2024.128357 | |||||||||||
AInnoDetV2 4. | 0.89 | -58.4 | 79.1 | 29.5 | 107,733 | 174,608 | 6,831 | 94.0 | 38.2 | 54.3 | 296.0 |
AInnovation: PC Attention Net | |||||||||||
PA_Det_NJ 5. | 0.89 | 82.1 | 79.3 | 2.4 | 108,480 | 14,417 | 6,084 | 94.7 | 88.3 | 91.4 | 59.2 |
PA_TECH_NJ | |||||||||||
YTLAB 6. | 0.89 | 76.7 | 80.2 | 2.8 | 104,555 | 16,685 | 10,009 | 91.3 | 86.2 | 88.7 | 22.3 |
Z. Cai, Q. Fan, R. Feris, N. Vasconcelos. A unified multi-scale deep convolutional neural network for fast object detection. In European Conference on Computer Vision, 2016. | |||||||||||
KDNT 7. | 0.89 | 67.1 | 80.1 | 4.8 | 105,473 | 28,623 | 9,091 | 92.1 | 78.7 | 84.8 | 0.8 |
F. Yu, W. Li, Q. Li, Y. Liu, X. Shi, J. Yan. POI: Multiple Object Tracking with High Performance Detection and Appearance Feature. In BMTT, SenseTime Group Limited, 2016. | |||||||||||
F_ViPeD_B 8. | 0.89 | -14.4 | 77.4 | 20.8 | 106,698 | 123,194 | 7,831 | 93.2 | 46.4 | 62.0 | 14.8 |
L. Ciampi, N. Messina, F. Falchi, C. Gennaro, G. Amato. Virtual to Real Adaptation of Pedestrian Detectors. In Sensors, 2020. | |||||||||||
GNN_SDT 9. | 0.89 | 78.1 | 81.3 | 2.4 | 103,895 | 14,397 | 10,669 | 90.7 | 87.8 | 89.2 | 5,919.0 |
Y. Wang, X. Weng, K. Kitani. Joint Detection and Multi-Object Tracking with Graph Neural Networks. In arXiv, 2020. | |||||||||||
ISE_Detv2 10. | 0.88 | 67.4 | 79.9 | 4.9 | 106,094 | 28,865 | 8,470 | 92.6 | 78.6 | 85.0 | 3.2 |
MIFD | |||||||||||
Tracker | AP | MODA | MODP | FAF | TP | FP | FN | Rcll | Prcn | F1 | Hz |
SW_YoloX_N 11. | 0.82 | 82.5 | 82.2 | 1.3 | 102,022 | 7,502 | 12,542 | 89.1 | 93.2 | 91.1 | 46.4 |
C.-Y. Tsai, R.-Y. Wang and Y.-C. Chiu, “SW-YOLOX: A Real-Time Pedestrian Detection System Based on Sliding Window-Mixed Attention Mechanism in YOLOX Lightweight Network,” Neurocomputing, accepted for publication, DOI: https://doi.org/10.1016/j.neucom.2024.128357 | |||||||||||
ZIZOM 12. | 0.81 | 72.0 | 79.8 | 2.2 | 95,414 | 12,990 | 19,139 | 83.3 | 88.0 | 85.6 | 2.4 |
C. Lin, L. Jiwen, G. Wang, J. Zhou. Graininess-Aware Deep Feature Learning for Pedestrian Detection. In ECCV, 2018. | |||||||||||
SDP 13. | 0.81 | 76.9 | 78.0 | 1.3 | 95,699 | 7,599 | 18,865 | 83.5 | 92.6 | 87.9 | 0.6 |
F. Yang, W. Choi, Y. Lin. Exploit All the Layers: Fast and Accurate CNN Object Detector With Scale Dependent Pooling and Cascaded Rejection Classifiers. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. | |||||||||||
FRCNN 14. | 0.72 | 68.5 | 78.0 | 1.7 | 88,601 | 10,081 | 25,963 | 77.3 | 89.8 | 83.1 | 5.1 |
S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In NIPS, 2015. | |||||||||||
DPM 15. | 0.61 | 31.2 | 75.8 | 7.1 | 78,007 | 42,308 | 36,557 | 68.1 | 64.8 | 66.4 | 19.7 |
P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan. Object Detection with Discriminatively Trained Part Based Models. In TPAMI, 2010. | |||||||||||
MHD 16. | 0.49 | 11.2 | 69.9 | 8.8 | 64,637 | 51,801 | 49,927 | 56.4 | 55.5 | 56.0 | 3.0 |
Mobilenet-based Human Detection | |||||||||||
YLHDv2 17. | 0.46 | 56.9 | 73.2 | 2.5 | 80,093 | 14,938 | 34,471 | 69.9 | 84.3 | 76.4 | 11.8 |
https://arxiv.org/abs/1612.08242 | |||||||||||
HDGP 18. | 0.45 | 42.1 | 76.4 | 1.3 | 55,680 | 7,436 | 58,884 | 48.6 | 88.2 | 62.7 | 0.6 |
A. Garcia-Martin, R. Sanchez-Matilla, J. Martinez. Hierarchical detection of persons in groups. In Signal, Image and Video Processing, 2017. | |||||||||||
VDet 19. | 0.44 | 44.7 | 75.7 | 1.0 | 56,980 | 5,765 | 57,584 | 49.7 | 90.8 | 64.3 | 5.9 |
Vitrociset Detection Algorithm | |||||||||||
ACF 20. | 0.32 | 18.1 | 72.1 | 2.8 | 37,312 | 16,539 | 77,252 | 32.6 | 69.3 | 44.3 | 74.0 |
P. Dollar, R. Appel, S. Belongie, P. Perona. Fast Feature Pyramids for Object Detection. In TPAMI, 2014. |
Sequences | Frames | Trajectories | Boxes |
7 | 5919 | 785 | 188076 |
Measure | Better | Perfect | Description |
AP | higher | 1 | Average Precision taken over a set of reference recall values (0:0.1:1) |
MODA | higher | 100% | Multi-Object Detection Accuracy [1]. This measure combines false positives and missed targets. |
MODP | higher | 100% | Multi-Object Detection Precision [1]. The misalignment between the annotated and the predicted bounding boxes. |
FAF | lower | 0 | The average number of false alarms per frame. |
TP | higher | #GT | The total number of true positives. |
FP | lower | 0 | The total number of false positives. |
FN | lower | 0 | The total number of false negatives (missed targets). |
Rcll | higher | 100% | Ratio of correct detections to total number of GT boxes. |
Prcn | higher | 100% | Ratio of TP / (TP+FP). |
F1 | higher | 100% | Harmonic mean of precision and recall. |
Hz | higher | Inf. | Processing speed (in frames per second excluding the detector) on the benchmark. The frequency is provided by the authors and not officially evaluated by the MOTChallenge. |
Symbol | Description |
This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time. | |
This method used the provided detection set as input. | |
This method used a private detection set as input. | |
This entry has been submitted or updated less than a week ago. |
[1] | Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008. |