Click on a measure to sort the table accordingly. See below for a more detailed description.
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
SCOSORT 1. | 76.9 | 76.9 | 62.8 | 846 (68.1) | 126 (10.1) | 20,875 | 96,944 | 81.3 | 95.3 | 62.5 | 63.4 | 67.7 | 79.2 | 68.3 | 80.1 | 84.3 | 4.7 | 1,524 (0.0) | 2,986 (0.0) | 17.5 | |
FeatureSORT 2. | 76.6 | 75.1 | 61.3 | 832 (67.0) | 142 (11.4) | 25,083 | 95,027 | 81.6 | 94.4 | 60.1 | 62.7 | 66.3 | 76.1 | 68.1 | 78.7 | 83.6 | 5.6 | 1,081 (0.0) | 1,250 (0.0) | 4.8 | |
H. Hashempoor, R. Koikara, Y. Hwang. FeatureSORT: Essential Features for Effective Tracking. In , 2024. | |||||||||||||||||||||
kalman_pub 3. | 67.0 | 70.2 | 56.4 | 592 (47.7) | 263 (21.2) | 9,685 | 160,303 | 69.0 | 97.4 | 58.3 | 54.8 | 65.0 | 73.6 | 57.7 | 81.4 | 84.1 | 2.2 | 680 (0.0) | 1,738 (0.0) | 17.7 | |
Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, X. Wang. ByteTrack: Multi-Object Tracking by Associating Every Detection Box. In Proceedings of the European Conference on Computer Vision (ECCV), 2022. | |||||||||||||||||||||
ISC 4. | 66.4 | 70.7 | 55.6 | 553 (44.5) | 193 (15.5) | 32,702 | 140,151 | 72.9 | 92.0 | 55.7 | 55.6 | 60.8 | 75.8 | 60.4 | 76.2 | 81.7 | 7.3 | 1,185 (0.0) | 2,921 (0.0) | 22.4 | |
OUTrack_fm_p 5. | 65.4 | 65.1 | 52.1 | 615 (49.5) | 165 (13.3) | 38,243 | 137,770 | 73.4 | 90.8 | 50.7 | 53.8 | 53.9 | 77.8 | 59.4 | 73.6 | 81.4 | 8.5 | 2,885 (0.0) | 7,205 (0.0) | 5.1 | |
Q. Liu, D. Chen, Q. Chu, L. Yuan, B. Liu, L. Zhang, N. Yu. Online Multi-Object Tracking with Unsupervised Re-Identification Learning and Occlusion Estimation. In Neurocomputing, 2022. | |||||||||||||||||||||
UTM 6. | 64.4 | 65.9 | 53.3 | 807 (65.0) | 108 (8.7) | 82,726 | 98,974 | 80.9 | 83.5 | 51.0 | 56.1 | 60.6 | 65.7 | 66.9 | 69.0 | 82.3 | 18.5 | 2,592 (0.0) | 1,735 (0.0) | 6.2 | |
S. You, H. Yao, k. Bao, C. Xu. UTM: A Unified Multiple Object Tracking Model with Identity-Aware Feature Enhancement. In CVPR, 2023. | |||||||||||||||||||||
RETracker 7. | 62.4 | 53.0 | 45.3 | 605 (48.7) | 192 (15.5) | 43,503 | 147,451 | 71.5 | 89.5 | 38.6 | 53.4 | 53.3 | 52.3 | 59.3 | 74.2 | 82.1 | 9.7 | 3,804 (0.0) | 9,245 (0.0) | 0.0 | |
Y. Kawanishi. Label-Based Multiple Object Ensemble Tracking with Randomized Frame Dropping. In Proceedings of the 26th International Conference on Pattern Recognition, 2022. | |||||||||||||||||||||
SUSHI 8. | 61.6 | 71.6 | 55.4 | 591 (47.6) | 239 (19.2) | 29,429 | 168,098 | 67.5 | 92.2 | 60.6 | 50.8 | 65.8 | 76.7 | 55.2 | 75.4 | 81.8 | 6.6 | 1,053 (0.0) | 1,471 (0.0) | 5.3 | |
O. Cetintas, G. Brasó, L. Leal-Taixé. Unifying Short and Long-Term Tracking with Graph Hierarchies. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023. | |||||||||||||||||||||
TransCtr 9. | 61.0 | 49.8 | 43.5 | 601 (48.4) | 192 (15.5) | 49,189 | 147,890 | 71.4 | 88.3 | 36.1 | 52.9 | 44.5 | 59.0 | 59.2 | 73.1 | 81.7 | 11.0 | 4,493 (0.0) | 8,950 (0.0) | 1.0 | |
Y. Xu, Y. Ban, G. Delorme, C. Gan, D. Rus, X. Alameda-Pineda. TransCenter: Transformers with Dense Queries for Multiple-Object Tracking. In arXiv, 2021. | |||||||||||||||||||||
MPTC 10. | 60.6 | 59.7 | 48.5 | 635 (51.1) | 208 (16.7) | 45,318 | 153,978 | 70.2 | 88.9 | 46.5 | 50.7 | 51.6 | 66.4 | 56.8 | 72.0 | 81.4 | 10.1 | 4,533 (64.5) | 5,163 (73.5) | 0.7 | |
D. Stadler, J. Beyerer. Multi-Pedestrian Tracking with Clusters. In 2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2021. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
TMOH 11. | 60.1 | 61.2 | 48.9 | 580 (46.7) | 221 (17.8) | 38,043 | 165,899 | 67.9 | 90.2 | 48.4 | 49.7 | 52.9 | 71.0 | 54.8 | 72.9 | 81.2 | 8.5 | 2,342 (34.5) | 4,320 (63.6) | 0.6 | |
D. Stadler, J. Beyerer. Improving Multiple Pedestrian Tracking by Track Management and Occlusion Handling. In CVPR, 2021. | |||||||||||||||||||||
OCSORTpublic 12. | 59.9 | 67.0 | 54.3 | 478 (38.5) | 330 (26.6) | 4,434 | 202,502 | 60.9 | 98.6 | 59.5 | 49.7 | 65.1 | 76.6 | 51.6 | 83.5 | 85.0 | 1.0 | 554 (0.0) | 2,345 (0.0) | 27.6 | |
J. Cao, X. Weng, R. Khirodkar, J. Pang, K. Kitani. Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking. In , 2022. | |||||||||||||||||||||
mfi_tst 13. | 59.3 | 59.1 | 47.1 | 511 (41.1) | 215 (17.3) | 36,150 | 172,782 | 66.6 | 90.5 | 46.2 | 48.4 | 50.0 | 73.9 | 53.1 | 72.2 | 79.9 | 8.1 | 1,919 (0.0) | 3,743 (0.0) | 0.5 | |
J. Y, H. Ge, J. Yang, Y. Tong, S. Su. Online multi-object tracking using multi-function integration and tracking simulation training. In Applied Intelligence, 2021. | |||||||||||||||||||||
MOTer 14. | 59.1 | 49.9 | 43.6 | 598 (48.1) | 189 (15.2) | 59,624 | 147,333 | 71.5 | 86.1 | 37.0 | 51.8 | 45.2 | 58.8 | 58.9 | 71.0 | 81.2 | 13.3 | 4,597 (0.0) | 9,232 (0.0) | 1.0 | |
Y. Xu, Y. Ban, G. Delorme, C. Gan, D. Rus, X. Alameda-Pineda. TransCenter: Transformers with Dense Queries for Multiple-Object Tracking. In arXiv, 2021. | |||||||||||||||||||||
ApLift 15. | 58.9 | 56.5 | 46.6 | 513 (41.3) | 264 (21.3) | 17,739 | 192,736 | 62.8 | 94.8 | 45.2 | 48.2 | 48.1 | 76.8 | 51.3 | 77.5 | 82.2 | 4.0 | 2,241 (0.0) | 2,112 (0.0) | 0.4 | |
A. Hornakova*, T. Kaiser*, M. Rolinek, B. Rosenhahn, P. Swoboda, R. Henschel. Making Higher Order MOT Scalable: An Efficient Approximate Solver for Lifted Disjoint Paths. In International Conference on Computer Vision (ICCV), 2021. | |||||||||||||||||||||
MPNTrack 16. | 57.6 | 59.1 | 46.8 | 474 (38.2) | 279 (22.5) | 16,953 | 201,384 | 61.1 | 94.9 | 47.3 | 46.6 | 52.7 | 70.0 | 49.5 | 76.9 | 81.6 | 3.8 | 1,210 (19.8) | 1,420 (23.2) | 6.5 | |
G. Braso, L. Leal-Taixe. Learning a Neural Solver for Multiple Object Tracking. In CVPR, 2020. | |||||||||||||||||||||
IQHAT 17. | 57.1 | 57.7 | 45.7 | 507 (40.8) | 249 (20.0) | 32,247 | 187,937 | 63.7 | 91.1 | 44.7 | 46.9 | 50.1 | 68.8 | 51.1 | 73.1 | 80.5 | 7.2 | 1,875 (0.0) | 2,543 (0.0) | 7.5 | |
Y. He, X. Wei, X. Hong, W. Ke, Y. Gong. Identity-Quantity Harmonic Multi-Object Tracking. In IEEE Transactions on Image Processing, 2022. | |||||||||||||||||||||
LPC_MOT 18. | 56.3 | 62.5 | 49.0 | 424 (34.1) | 313 (25.2) | 11,726 | 213,056 | 58.8 | 96.3 | 52.4 | 45.8 | 54.7 | 81.3 | 48.1 | 78.7 | 82.3 | 2.6 | 1,562 (26.6) | 1,865 (31.7) | 0.7 | |
P. Dai, R. Weng, W. Choi, C. Zhang, Z. He, W. Ding. Learning a Proposal Classifier for Multiple Object tracking. In CVPR (Accepted), 2021. | |||||||||||||||||||||
Sp_Con 19. | 54.6 | 53.4 | 42.5 | 407 (32.8) | 317 (25.5) | 9,486 | 223,607 | 56.8 | 96.9 | 41.4 | 43.8 | 48.2 | 63.8 | 46.0 | 78.4 | 82.0 | 2.1 | 1,674 (0.0) | 2,455 (0.0) | 1.4 | |
G. Wang, Y. Wang, R. Gu, W. Hu, J. Hwang. Split and Connect: A Universal Tracklet Booster for Multi-Object Tracking. In IEEE Transactions on Multimedia, 2022. | |||||||||||||||||||||
GNNMatch 20. | 54.5 | 49.0 | 40.2 | 407 (32.8) | 317 (25.5) | 9,522 | 223,611 | 56.8 | 96.9 | 37.0 | 43.8 | 44.0 | 58.7 | 45.9 | 78.4 | 82.0 | 2.1 | 2,038 (35.9) | 2,456 (43.3) | 0.1 | |
I. Papakis, A. Sarkar, A. Karpatne. GCNNMatch: Graph Convolutional Neural Networks for Multi-Object Tracking via Sinkhorn Normalization. In arXiv preprint arXiv:2010.00067, 2020. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
MOT20_TBC 21. | 54.5 | 50.1 | 0.0 | 415 (33.4) | 245 (19.7) | 37,937 | 195,242 | 62.3 | 89.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 8.5 | 2,449 (39.3) | 2,580 (41.4) | 5.6 | |
Tracking-by-Counting: Using Network Flows on Crowd Density Maps for Tracking Multiple Targets[J]. IEEE Transactions on Image Processing, 2020, 30: 1439-1452. | |||||||||||||||||||||
UnsupTrack 22. | 53.6 | 50.6 | 41.7 | 376 (30.3) | 311 (25.0) | 6,439 | 231,298 | 55.3 | 97.8 | 40.2 | 43.3 | 43.2 | 75.9 | 45.1 | 79.8 | 82.6 | 1.4 | 2,178 (39.4) | 4,335 (78.4) | 1.3 | |
S. Karthik, A. Prabhu, V. Gandhi. Simple Unsupervised Multi-Object Tracking. In Arxiv, 2020. | |||||||||||||||||||||
Tracktor++v2 23. | 52.6 | 52.7 | 42.1 | 365 (29.4) | 331 (26.7) | 6,930 | 236,680 | 54.3 | 97.6 | 42.0 | 42.3 | 45.9 | 71.6 | 44.1 | 79.3 | 82.4 | 1.5 | 1,648 (30.4) | 4,374 (80.6) | 1.2 | |
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019. | |||||||||||||||||||||
SFS 24. | 50.8 | 41.1 | 32.7 | 341 (27.5) | 251 (20.2) | 50,139 | 200,932 | 61.2 | 86.3 | 25.1 | 43.1 | 34.5 | 47.4 | 48.0 | 67.8 | 78.2 | 11.2 | 3,503 (57.3) | 7,617 (124.5) | 0.1 | |
MTSFS: Online Multi-Object Tracking Based on Salient Feature Selection in Crowded Scenes | |||||||||||||||||||||
GMPHD_Rd20 25. | 46.9 | 45.1 | 36.9 | 346 (27.9) | 257 (20.7) | 45,343 | 224,201 | 56.7 | 86.6 | 33.3 | 41.3 | 37.7 | 67.9 | 45.8 | 70.0 | 80.3 | 10.1 | 5,337 (0.0) | 8,609 (0.0) | 25.2 | |
N. Baisa. Occlusion-robust online multi-object visual tracking using a GM-PHD filter with CNN-based re-identification. In Journal of Visual Communication and Image Representation, 2021. | |||||||||||||||||||||
BBT 26. | 46.8 | 42.2 | 35.8 | 312 (25.1) | 289 (23.3) | 35,014 | 236,176 | 54.4 | 88.9 | 32.2 | 40.2 | 35.1 | 70.2 | 43.8 | 71.7 | 80.6 | 7.8 | 3,880 (71.4) | 7,207 (132.6) | 8.0 | |
MTAP-D-20-01870 Tracking Subjects and Detecting Relationships in Crowded City Videos (under review) | |||||||||||||||||||||
FlowTracker 27. | 46.7 | 42.4 | 35.6 | 345 (27.8) | 249 (20.0) | 54,732 | 217,371 | 58.0 | 84.6 | 31.2 | 41.3 | 34.2 | 68.3 | 46.4 | 67.6 | 79.1 | 12.2 | 3,532 (0.0) | 5,165 (0.0) | 19.2 | |
H. Nishimura et al., "SDOF-Tracker: Fast and Accurate Multiple Human Tracking by Skipped-Detection and Optical-Flow" | |||||||||||||||||||||
IOU_KMM 28. | 46.5 | 49.4 | 40.4 | 371 (29.9) | 244 (19.6) | 57,517 | 214,777 | 58.5 | 84.0 | 39.4 | 41.9 | 41.7 | 75.2 | 47.3 | 67.9 | 79.9 | 12.8 | 4,509 (0.0) | 7,557 (0.0) | 30.3 | |
O. Urbann, O. Bredtmann, M. Otten, P. Richter, T. Bauer, D. Zibriczky. Online and Real-Time Tracking in a Surveillance Scenario. In arXiv, 2021. | |||||||||||||||||||||
CT_v0 29. | 45.1 | 35.6 | 33.0 | 409 (32.9) | 235 (18.9) | 69,491 | 207,927 | 59.8 | 81.7 | 26.3 | 42.3 | 27.7 | 75.4 | 48.7 | 66.4 | 79.8 | 15.5 | 6,492 (0.0) | 6,351 (0.0) | 317.9 | |
J. Lohn-Jaramillo, L. Ray, R. Granger, E. Bowen. ClusterTracker: An Efficiency-Focused Multiple Object Tracking Method. In , 2022. | |||||||||||||||||||||
LITE 30. | 43.8 | 39.7 | 32.9 | 233 (18.8) | 298 (24.0) | 34,230 | 251,079 | 51.5 | 88.6 | 28.8 | 37.9 | 36.4 | 46.8 | 41.4 | 71.3 | 80.6 | 7.6 | 5,694 (0.0) | 13,502 (0.0) | 149.3 | |
J. Alikhanov, D. Obidov, H. Kim. LITE: A Paradigm Shift in Multi-Object Tracking with Efficient ReID Feature Integration. In , 2024. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
SORT20 31. | 42.7 | 45.1 | 36.1 | 208 (16.7) | 326 (26.2) | 27,521 | 264,694 | 48.8 | 90.2 | 35.9 | 36.7 | 39.4 | 66.9 | 39.5 | 73.0 | 81.0 | 6.1 | 4,470 (91.5) | 17,798 (364.4) | 57.3 | |
A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft. Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP), 2016. | |||||||||||||||||||||
OVBT17 32. | 40.0 | 37.8 | 30.5 | 141 (11.4) | 374 (30.1) | 23,368 | 282,949 | 45.3 | 90.9 | 27.4 | 34.4 | 31.0 | 60.6 | 36.7 | 73.7 | 81.1 | 5.2 | 4,210 (0.0) | 10,026 (0.0) | 0.1 | |
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking multiple persons based on a variational bayesian model. In European Conference on Computer Vision Workshops, 2016. |
Sequences | Frames | Trajectories | Boxes |
4 | 4479 | 1501 | 765465 |
Measure | Better | Perfect | Description |
MOTA | higher | 100% | Multi-Object Tracking Accuracy (+/- denotes standard deviation across all sequences) [1]. This measure combines three error sources: false positives, missed targets and identity switches. |
IDF1 | higher | 100% | ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections. |
HOTA | higher | 100% | Higher Order Tracking Accuracy [3]. Geometric mean of detection accuracy and association accuracy. Averaged across localization thresholds. |
MT | higher | 100% | Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span. |
ML | lower | 0% | Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span. |
FP | lower | 0 | The total number of false positives. |
FN | lower | 0 | The total number of false negatives (missed targets). |
Rcll | higher | 100% | Ratio of correct detections to total number of GT boxes. |
Prcn | higher | 100% | Ratio of TP / (TP+FP). |
AssA | higher | 100% | Association Accuracy [3]. Association Jaccard index averaged over all matching detections and then averaged over localization thresholds. |
DetA | higher | 100% | Detection Accuracy [3]. Detection Jaccard index averaged over localization thresholds. |
AssRe | higher | 100% | Association Recall [3]. TPA / (TPA + FNA) averaged over all matching detections and then averaged over localization thresholds. |
AssPr | higher | 100% | Association Precision [3]. TPA / (TPA + FPA) averaged over all matching detections and then averaged over localization thresholds. |
DetRe | higher | 100% | Detection Recall [3]. TP /(TP + FN) averaged over localization thresholds. |
DetPr | higher | 100% | Detection Precision [3]. TP /(TP + FP) averaged over localization thresholds. |
LocA | higher | 100% | Localization Accuracy [3]. Average localization similarity averaged over all matching detections and averaged over localization thresholds. |
FAF | lower | 0 | The average number of false alarms per frame. |
ID Sw. | lower | 0 | Number of Identity Switches (ID switch ratio = #ID switches / recall) [4]. Please note that we follow the stricter definition of identity switches as described in the reference |
Frag | lower | 0 | The total number of times a trajectory is fragmented (i.e. interrupted during tracking). |
Hz | higher | Inf. | Processing speed (in frames per second excluding the detector) on the benchmark. The frequency is provided by the authors and not officially evaluated by the MOTChallenge. |
Symbol | Description |
This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time. | |
This method used the provided detection set as input. | |
This method used a private detection set as input. | |
This entry has been submitted or updated less than a week ago. |
[1] | Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008. |
[2] | Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016. |
[3] | HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking. International Journal of Computer Vision, 2020. |
[4] | Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009. |