Click on a measure to sort the table accordingly. See below for a more detailed description.
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
SCOSORT 1. | 81.0 | 79.8 | 64.8 | 1,314 (55.8) | 348 (14.8) | 23,406 | 82,509 | 85.4 | 95.4 | 64.7 | 65.3 | 70.5 | 78.8 | 70.5 | 78.8 | 83.2 | 1.3 | 1,347 (0.0) | 1,956 (0.0) | 69.3 | |
ling 2. | 80.5 | 78.6 | 64.2 | 1,297 (55.1) | 345 (14.6) | 26,022 | 82,492 | 85.4 | 94.9 | 63.7 | 65.1 | 69.2 | 79.1 | 70.6 | 78.5 | 83.2 | 1.5 | 1,566 (0.0) | 1,829 (0.0) | 39.7 | |
wyh1 3. | 80.3 | 78.4 | 64.2 | 1,284 (54.5) | 324 (13.8) | 30,725 | 79,209 | 86.0 | 94.0 | 63.8 | 65.1 | 69.2 | 79.2 | 71.1 | 77.8 | 83.1 | 1.7 | 1,296 (0.0) | 1,640 (0.0) | 21.5 | |
FeatureSORT 4. | 79.6 | 77.2 | 63.0 | 1,264 (53.7) | 348 (14.8) | 29,588 | 83,132 | 85.3 | 94.2 | 62.0 | 64.4 | 68.2 | 76.0 | 70.4 | 77.7 | 83.1 | 1.7 | 2,269 (0.0) | 2,148 (0.0) | 8.7 | |
H. Hashempoor, R. Koikara, Y. Hwang. FeatureSORT: Essential Features for Effective Tracking. In , 2024. | |||||||||||||||||||||
OAIE 5. | 78.9 | 78.5 | 63.2 | 1,178 (50.0) | 371 (15.8) | 21,979 | 94,439 | 83.3 | 95.5 | 62.9 | 63.7 | 69.1 | 76.1 | 68.7 | 78.8 | 83.2 | 1.2 | 2,422 (0.0) | 3,712 (0.0) | 25.4 | |
PermaTrack 6. | 73.1 | 67.2 | 54.2 | 996 (42.3) | 450 (19.1) | 24,577 | 123,508 | 78.1 | 94.7 | 51.2 | 58.0 | 59.6 | 67.9 | 62.8 | 76.1 | 81.6 | 1.4 | 3,571 (0.0) | 5,826 (0.0) | 11.9 | |
P. Tokmakov, J. Li, W. Burgard, A. Gaidon. Learning to Track with Object Permanence. In ICCV, 2021. | |||||||||||||||||||||
MOTer 7. | 71.9 | 62.3 | 54.1 | 894 (38.0) | 534 (22.7) | 17,378 | 137,008 | 75.7 | 96.1 | 49.9 | 59.0 | 54.3 | 76.0 | 63.0 | 80.0 | 83.7 | 1.0 | 4,046 (0.0) | 7,929 (0.0) | 1.0 | |
Y. Xu, Y. Ban, G. Delorme, C. Gan, D. Rus, X. Alameda-Pineda. TransCenter: Transformers with Dense Queries for Multiple-Object Tracking. In arXiv, 2021. | |||||||||||||||||||||
PixelGuide 8. | 69.7 | 68.4 | 55.5 | 903 (38.3) | 615 (26.1) | 26,871 | 140,457 | 75.1 | 94.0 | 55.1 | 56.3 | 60.7 | 74.4 | 60.9 | 76.3 | 81.6 | 1.5 | 3,639 (0.0) | 4,155 (0.0) | 8.9 | |
A. Boragule, H. Jang, N. Ha, M. Jeon. Pixel-Guided Association for Multi-Object Tracking. In Sensors, 2022. | |||||||||||||||||||||
NCT 9. | 69.5 | 68.5 | 54.6 | 1,092 (46.4) | 399 (16.9) | 65,463 | 101,471 | 82.0 | 87.6 | 53.7 | 56.1 | 59.6 | 71.5 | 64.7 | 69.1 | 79.9 | 3.7 | 4,919 (0.0) | 4,054 (0.0) | 13.9 | |
K. Zeng, Y. You, T. Shen, Q. Wang, Z. Tao, Z. Wang, Q. Liu. NCT:noise-control multi-object tracking. In Complex & Intelligent Systems, 2023. | |||||||||||||||||||||
OUTrack_fm_p 10. | 69.0 | 66.8 | 54.8 | 885 (37.6) | 464 (19.7) | 28,795 | 141,580 | 74.9 | 93.6 | 52.9 | 57.1 | 59.2 | 73.2 | 62.0 | 77.4 | 83.0 | 1.6 | 4,472 (0.0) | 8,723 (0.0) | 27.6 | |
Q. Liu, D. Chen, Q. Chu, L. Yuan, B. Liu, L. Zhang, N. Yu. Online Multi-Object Tracking with Unsupervised Re-Identification Learning and Occlusion Estimation. In Neurocomputing, 2022. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
TransCtr 11. | 68.8 | 61.4 | 51.4 | 867 (36.8) | 564 (23.9) | 22,860 | 149,188 | 73.6 | 94.8 | 47.7 | 56.0 | 52.8 | 73.1 | 60.2 | 77.6 | 82.4 | 1.3 | 4,102 (0.0) | 8,468 (0.0) | 1.0 | |
Y. Xu, Y. Ban, G. Delorme, C. Gan, D. Rus, X. Alameda-Pineda. TransCenter: Transformers with Dense Queries for Multiple-Object Tracking. In arXiv, 2021. | |||||||||||||||||||||
TrajEocc 12. | 67.8 | 61.4 | 50.0 | 848 (36.0) | 577 (24.5) | 20,950 | 157,460 | 72.1 | 95.1 | 46.9 | 53.9 | 55.4 | 67.3 | 57.9 | 76.4 | 81.4 | 1.2 | 3,475 (0.0) | 5,663 (0.0) | 1.4 | |
A. Girbau, X. Gir'o-i-Nieto, I. Rius, F. Marqu'es. Multiple Object Tracking with Mixture Density Networks for Trajectory Estimation. In arXiv preprint arXiv:2106.10950, 2021. | |||||||||||||||||||||
BYTE_Pub 13. | 67.4 | 70.0 | 56.1 | 730 (31.0) | 735 (31.2) | 9,939 | 172,636 | 69.4 | 97.5 | 57.5 | 54.9 | 64.8 | 73.9 | 57.7 | 81.1 | 83.8 | 0.6 | 1,331 (0.0) | 2,387 (0.0) | 27.4 | |
Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, X. Wang. ByteTrack: Multi-Object Tracking by Associating Every Detection Box. In Proceedings of the European Conference on Computer Vision (ECCV), 2022. | |||||||||||||||||||||
TrajE 14. | 67.4 | 61.2 | 49.7 | 820 (34.8) | 587 (24.9) | 18,652 | 161,347 | 71.4 | 95.6 | 46.6 | 53.5 | 54.4 | 67.8 | 57.3 | 76.7 | 81.5 | 1.1 | 4,019 (0.0) | 6,613 (0.0) | 1.4 | |
A. Girbau, X. Gir'o-i-Nieto, I. Rius, F. Marqu'es. Multiple Object Tracking with Mixture Density Networks for Trajectory Estimation. In arXiv preprint arXiv:2106.10950, 2021. | |||||||||||||||||||||
MAT 15. | 67.1 | 69.2 | 56.0 | 917 (38.9) | 622 (26.4) | 22,756 | 161,547 | 71.4 | 94.7 | 57.2 | 55.1 | 62.8 | 76.6 | 59.2 | 78.5 | 83.1 | 1.3 | 1,279 (17.9) | 2,037 (28.5) | 11.5 | |
MAT: Motion-Aware Multi-Object Tracking | |||||||||||||||||||||
HTracker 16. | 66.9 | 70.4 | 55.3 | 667 (28.3) | 490 (20.8) | 30,704 | 151,001 | 73.2 | 93.1 | 55.5 | 55.3 | 60.9 | 74.8 | 59.9 | 76.2 | 81.6 | 1.7 | 4,806 (65.6) | 10,994 (150.1) | 36.7 | |
Xudong Zhang. Boosting the tracking speed for real-time application. | |||||||||||||||||||||
hugmot 17. | 64.8 | 62.8 | 49.4 | 738 (31.3) | 645 (27.4) | 16,174 | 180,371 | 68.0 | 96.0 | 48.4 | 50.8 | 54.1 | 71.0 | 54.0 | 76.2 | 80.7 | 0.9 | 2,102 (30.9) | 7,750 (113.9) | 92.5 | |
Multiple Object Tracking by Tracjectory Map Regression with Temporal Priors Embedding | |||||||||||||||||||||
UTM 18. | 63.5 | 65.1 | 52.5 | 881 (37.4) | 635 (27.0) | 33,683 | 170,352 | 69.8 | 92.1 | 53.2 | 52.2 | 59.7 | 73.4 | 57.0 | 75.2 | 81.9 | 1.9 | 1,686 (0.0) | 2,562 (0.0) | 13.1 | |
S. You, H. Yao, k. Bao, C. Xu. UTM: A Unified Multiple Object Tracking Model with Identity-Aware Feature Enhancement. In CVPR, 2023. | |||||||||||||||||||||
MPTC 19. | 62.6 | 65.8 | 51.7 | 627 (26.6) | 750 (31.8) | 8,824 | 198,338 | 64.8 | 97.6 | 53.1 | 50.6 | 57.6 | 75.5 | 53.1 | 79.9 | 82.5 | 0.5 | 4,074 (0.0) | 5,534 (0.0) | 1.2 | |
D. Stadler, J. Beyerer. Multi-Pedestrian Tracking with Clusters. In 2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2021. | |||||||||||||||||||||
TMOH 20. | 62.1 | 62.8 | 50.4 | 633 (26.9) | 739 (31.4) | 10,951 | 201,195 | 64.3 | 97.1 | 50.9 | 50.2 | 54.8 | 77.2 | 52.7 | 79.5 | 82.4 | 0.6 | 1,897 (29.5) | 4,622 (71.8) | 0.7 | |
D. Stadler, J. Beyerer. Improving Multiple Pedestrian Tracking by Track Management and Occlusion Handling. In CVPR, 2021. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
SUSHI 21. | 62.0 | 71.5 | 54.6 | 801 (34.0) | 741 (31.5) | 29,428 | 183,825 | 67.4 | 92.8 | 59.5 | 50.3 | 65.3 | 76.5 | 54.3 | 74.8 | 80.8 | 1.7 | 1,041 (0.0) | 2,332 (0.0) | 21.1 | |
O. Cetintas, G. Brasó, L. Leal-Taixé. Unifying Short and Long-Term Tracking with Graph Hierarchies. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023. | |||||||||||||||||||||
UnsupTrack 22. | 61.7 | 58.1 | 46.9 | 640 (27.2) | 762 (32.4) | 16,872 | 197,632 | 65.0 | 95.6 | 45.2 | 48.9 | 53.8 | 64.5 | 52.0 | 76.5 | 81.2 | 1.0 | 1,864 (28.7) | 4,213 (64.8) | 2.0 | |
S. Karthik, A. Prabhu, V. Gandhi. Simple Unsupervised Multi-Object Tracking. In Arxiv, 2020. | |||||||||||||||||||||
Sp_Con 23. | 61.5 | 63.3 | 50.5 | 622 (26.4) | 754 (32.0) | 14,056 | 200,655 | 64.4 | 96.3 | 52.0 | 49.2 | 55.3 | 79.3 | 52.0 | 77.8 | 81.7 | 0.8 | 2,478 (0.0) | 5,079 (0.0) | 7.7 | |
G. Wang, Y. Wang, R. Gu, W. Hu, J. Hwang. Split and Connect: A Universal Tracklet Booster for Multi-Object Tracking. In IEEE Transactions on Multimedia, 2022. | |||||||||||||||||||||
CTTrackPub 24. | 61.5 | 59.6 | 48.2 | 621 (26.4) | 752 (31.9) | 14,076 | 200,672 | 64.4 | 96.3 | 47.8 | 49.0 | 53.9 | 70.6 | 51.9 | 77.6 | 81.7 | 0.8 | 2,583 (40.1) | 4,965 (77.1) | 17.0 | |
X. Zhou, V. Koltun, P. Kr"ahenb"uhl. Tracking Objects as Points. In ECCV, 2020. | |||||||||||||||||||||
Lif_T 25. | 60.5 | 65.6 | 51.3 | 637 (27.0) | 791 (33.6) | 14,966 | 206,619 | 63.4 | 96.0 | 54.7 | 48.3 | 59.0 | 78.6 | 51.1 | 77.4 | 81.3 | 0.8 | 1,189 (18.8) | 3,476 (54.8) | 0.5 | |
A. Hornakova, R. Henschel, B. Rosenhahn, P. Swoboda. Lifted Disjoint Paths with Application in Multiple Object Tracking. In ICML, 2020. | |||||||||||||||||||||
ApLift 26. | 60.5 | 65.6 | 51.1 | 798 (33.9) | 728 (30.9) | 30,609 | 190,670 | 66.2 | 92.4 | 53.5 | 49.1 | 59.6 | 73.4 | 53.2 | 74.2 | 80.7 | 1.7 | 1,709 (0.0) | 2,672 (0.0) | 1.8 | |
A. Hornakova*, T. Kaiser*, M. Rolinek, B. Rosenhahn, P. Swoboda, R. Henschel. Making Higher Order MOT Scalable: An Efficient Approximate Solver for Lifted Disjoint Paths. In International Conference on Computer Vision (ICCV), 2021. | |||||||||||||||||||||
mfi_tst 27. | 60.1 | 58.8 | 47.2 | 612 (26.0) | 699 (29.7) | 13,503 | 209,475 | 62.9 | 96.3 | 46.4 | 48.3 | 49.7 | 76.7 | 50.9 | 78.0 | 81.5 | 0.8 | 2,065 (0.0) | 3,829 (0.0) | 2.2 | |
J. Y, H. Ge, J. Yang, Y. Tong, S. Su. Online multi-object tracking using multi-function integration and tracking simulation training. In Applied Intelligence, 2021. | |||||||||||||||||||||
ISE_MOT17R 28. | 60.1 | 56.4 | 45.8 | 672 (28.5) | 661 (28.1) | 23,168 | 199,483 | 64.6 | 94.0 | 43.2 | 49.0 | 47.7 | 72.0 | 52.3 | 76.1 | 81.0 | 1.3 | 2,556 (39.5) | 3,182 (49.2) | 7.2 | |
MIFT | |||||||||||||||||||||
SLA_public 29. | 59.7 | 63.4 | 49.1 | 566 (24.0) | 732 (31.1) | 16,644 | 209,318 | 62.9 | 95.5 | 50.7 | 47.9 | 55.9 | 74.6 | 50.5 | 76.7 | 80.6 | 0.9 | 1,647 (26.2) | 3,819 (60.7) | 12.8 | |
Spatial-Attention Location-Aware Multi-Object Tracking. In , 2020. | |||||||||||||||||||||
LPC_MOT 30. | 59.0 | 66.8 | 51.5 | 703 (29.9) | 798 (33.9) | 23,102 | 206,948 | 63.3 | 93.9 | 56.0 | 47.7 | 62.7 | 74.0 | 51.0 | 75.7 | 80.9 | 1.3 | 1,122 (17.7) | 1,943 (30.7) | 4.8 | |
P. Dai, R. Weng, W. Choi, C. Zhang, Z. He, W. Ding. Learning a Proposal Classifier for Multiple Object tracking. In CVPR (Accepted), 2021. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
MPNTrack 31. | 58.8 | 61.7 | 49.0 | 679 (28.8) | 788 (33.5) | 17,413 | 213,594 | 62.1 | 95.3 | 51.1 | 47.3 | 57.1 | 74.3 | 50.2 | 76.9 | 81.5 | 1.0 | 1,185 (19.1) | 2,265 (36.4) | 6.5 | |
G. Braso, L. Leal-Taixe. Learning a Neural Solver for Multiple Object Tracking. In CVPR, 2020. | |||||||||||||||||||||
STMA 32. | 58.8 | 61.6 | 48.4 | 617 (26.2) | 763 (32.4) | 17,564 | 213,561 | 62.1 | 95.2 | 49.8 | 47.3 | 56.0 | 72.6 | 50.1 | 76.8 | 81.2 | 1.0 | 1,446 (23.3) | 3,430 (55.2) | 1.2 | |
WHY, @BUAA | |||||||||||||||||||||
IQHAT 33. | 58.4 | 61.8 | 49.0 | 568 (24.1) | 829 (35.2) | 15,013 | 218,274 | 61.3 | 95.8 | 51.4 | 46.9 | 56.6 | 75.1 | 49.5 | 77.4 | 81.5 | 0.8 | 1,261 (0.0) | 2,251 (0.0) | 8.1 | |
Y. He, X. Wei, X. Hong, W. Ke, Y. Gong. Identity-Quantity Harmonic Multi-Object Tracking. In IEEE Transactions on Image Processing, 2022. | |||||||||||||||||||||
OCSORTpublic 34. | 58.2 | 65.1 | 52.4 | 432 (18.3) | 1,055 (44.8) | 4,379 | 230,449 | 59.2 | 98.7 | 57.6 | 47.8 | 63.5 | 76.4 | 49.5 | 82.6 | 84.3 | 0.2 | 784 (0.0) | 2,006 (0.0) | 28.6 | |
J. Cao, X. Weng, R. Khirodkar, J. Pang, K. Kitani. Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking. In , 2022. | |||||||||||||||||||||
Lif_TsimInt 35. | 58.2 | 65.2 | 50.7 | 674 (28.6) | 791 (33.6) | 16,850 | 217,944 | 61.4 | 95.4 | 54.9 | 47.1 | 59.6 | 78.5 | 49.8 | 77.4 | 81.5 | 0.9 | 1,022 (16.7) | 2,062 (33.6) | 4.6 | |
A. Hornakova, R. Henschel, B. Rosenhahn, P. Swoboda. Lifted Disjoint Paths with Application in Multiple Object Tracking. In ICML, 2020. | |||||||||||||||||||||
GNNMatch 36. | 57.3 | 56.3 | 45.4 | 575 (24.4) | 787 (33.4) | 14,100 | 225,042 | 60.1 | 96.0 | 45.2 | 45.9 | 52.5 | 67.9 | 48.4 | 77.4 | 81.5 | 0.8 | 1,911 (31.8) | 2,837 (47.2) | 1.3 | |
I. Papakis, A. Sarkar, A. Karpatne. GCNNMatch: Graph Convolutional Neural Networks for Multi-Object Tracking via Sinkhorn Normalization. In arXiv preprint arXiv:2010.00067, 2020. | |||||||||||||||||||||
TG_CR 37. | 57.1 | 59.3 | 47.5 | 554 (23.5) | 823 (34.9) | 15,209 | 224,841 | 60.2 | 95.7 | 49.4 | 46.0 | 53.9 | 77.2 | 48.5 | 77.2 | 81.3 | 0.9 | 1,766 (0.0) | 2,349 (0.0) | 8.9 | |
C. Ma, F. Yang, Y. Li, H. Jia, X. Xie, W. Gao. Deep trajectory post-processing and position projection for single & multiple camera multiple object tracking. In International Journal of Computer Vision, 2021. | |||||||||||||||||||||
UNS20regress 38. | 56.8 | 58.3 | 46.4 | 538 (22.8) | 880 (37.4) | 11,567 | 230,645 | 59.1 | 96.6 | 47.9 | 45.3 | 51.0 | 79.0 | 47.6 | 77.8 | 81.4 | 0.7 | 1,320 (22.3) | 2,061 (34.9) | 72.8 | |
F. Bastani, S. He, S. Madden. Self-Supervised Multi-Object Tracking with Cross-input Consistency. In Advances in Neural Information Processing Systems (NeurIPS), 2021. | |||||||||||||||||||||
GSM_Tracktor 39. | 56.4 | 57.8 | 45.7 | 523 (22.2) | 813 (34.5) | 14,379 | 230,174 | 59.2 | 95.9 | 47.0 | 44.9 | 50.4 | 77.4 | 47.3 | 76.7 | 80.9 | 0.8 | 1,485 (25.1) | 2,763 (46.7) | 8.7 | |
Q. Liu, Q. Chu, B. Liu, N. Yu. Gsm: graph similarity model for multi-object tracking. In International Joint Conferences on Artificial Intelligence Organization, 2020. | |||||||||||||||||||||
Tracktor++v2 40. | 56.3 | 55.1 | 44.8 | 498 (21.1) | 831 (35.3) | 8,866 | 235,449 | 58.3 | 97.4 | 45.1 | 44.9 | 48.3 | 78.4 | 47.0 | 78.6 | 81.8 | 0.5 | 1,987 (34.1) | 3,763 (64.6) | 1.5 | |
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
MOMOT_GLMB 41. | 55.5 | 63.4 | 48.1 | 448 (19.0) | 845 (35.9) | 15,520 | 234,235 | 58.5 | 95.5 | 52.3 | 44.5 | 56.5 | 77.3 | 46.9 | 76.6 | 80.9 | 0.9 | 1,333 (22.8) | 13,805 (236.0) | 0.6 | |
Mohammadjavad Abbaspour, Mohammad Ali Masnadi-Shirazi. Online Multi-Object Tracking with delta-GLMB Filter based on Occlusion and Identity Switch Handling. In arXiv preprint arXiv:2011.10111, 2020. | |||||||||||||||||||||
GMOT 42. | 55.4 | 57.9 | 45.3 | 535 (22.7) | 817 (34.7) | 20,608 | 229,511 | 59.3 | 94.2 | 46.6 | 44.4 | 51.8 | 71.3 | 47.2 | 74.9 | 79.9 | 1.2 | 1,403 (23.7) | 2,765 (46.6) | 5.9 | |
LXD, KHW @ HRI-SH | |||||||||||||||||||||
TT17 43. | 54.9 | 63.1 | 48.4 | 575 (24.4) | 897 (38.1) | 20,236 | 233,295 | 58.7 | 94.2 | 53.2 | 44.3 | 56.7 | 78.2 | 47.0 | 75.5 | 80.3 | 1.1 | 1,088 (18.6) | 2,392 (40.8) | 2.5 | |
Y. Zhang, H. Sheng, Y. Wu, S. Wang, W. Lyu, W. Ke, Z. Xiong. Long-term Tracking with Deep Tracklet Association. In IEEE Transactions on Image Processing, 2020. | |||||||||||||||||||||
LSST17 44. | 54.7 | 62.3 | 47.1 | 480 (20.4) | 944 (40.1) | 26,091 | 228,434 | 59.5 | 92.8 | 51.0 | 43.8 | 56.0 | 72.5 | 46.9 | 73.1 | 79.3 | 1.5 | 1,243 (20.9) | 3,726 (62.6) | 1.5 | |
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification | |||||||||||||||||||||
TADN 45. | 54.6 | 49.0 | 39.7 | 528 (22.4) | 711 (30.2) | 36,285 | 214,857 | 61.9 | 90.6 | 35.1 | 45.3 | 43.1 | 59.3 | 49.4 | 72.2 | 80.1 | 2.0 | 4,869 (0.0) | 7,821 (0.0) | 360.9 | |
A. Psalta, V. Tsironis, K. Karantzalos. Transformer-based assignment decision network for multiple object tracking. In , 2022. | |||||||||||||||||||||
DGCT 46. | 54.5 | 51.3 | 42.0 | 495 (21.0) | 834 (35.4) | 10,471 | 243,143 | 56.9 | 96.8 | 40.5 | 43.9 | 44.1 | 73.8 | 46.0 | 78.4 | 81.8 | 0.6 | 2,865 (50.3) | 4,889 (85.9) | 7.0 | |
CJY, HYW, KHW @ HRI-SH | |||||||||||||||||||||
ISDH_HDAv2 47. | 54.5 | 65.9 | 49.2 | 622 (26.4) | 755 (32.1) | 46,693 | 207,093 | 63.3 | 88.4 | 53.5 | 45.5 | 57.3 | 75.0 | 50.0 | 69.9 | 78.5 | 2.6 | 3,010 (47.6) | 6,000 (94.8) | 3.6 | |
MM-008988/ IEEE Transactions on Multimedia | |||||||||||||||||||||
TPM 48. | 54.2 | 52.6 | 41.5 | 536 (22.8) | 882 (37.5) | 13,739 | 242,730 | 57.0 | 95.9 | 40.9 | 42.5 | 44.8 | 71.7 | 44.8 | 75.5 | 80.0 | 0.8 | 1,824 (32.0) | 2,472 (43.4) | 0.8 | |
J. Peng, T. Wang, et.al. TPM: Multiple Object Tracking with Tracklet-Plane Matching. In Pattern Recognition, 2020. | |||||||||||||||||||||
HDTR 49. | 54.1 | 48.4 | 46.8 | 549 (23.3) | 819 (34.8) | 18,002 | 238,818 | 57.7 | 94.8 | 48.9 | 44.9 | 54.3 | 74.1 | 47.6 | 78.2 | 82.6 | 1.0 | 1,895 (32.9) | 2,693 (46.7) | 1.8 | |
M. Babaee, A. Athar, G. Rigoll. Multiple People Tracking Using Hierarchical Deep Tracklet Re-identification. In arXiv preprint arXiv:1811.04091, 2018. | |||||||||||||||||||||
TrctrD17 50. | 53.7 | 53.8 | 42.4 | 458 (19.4) | 861 (36.6) | 11,731 | 247,447 | 56.1 | 96.4 | 42.7 | 42.5 | 46.8 | 73.4 | 44.6 | 76.6 | 80.4 | 0.7 | 1,947 (34.7) | 4,792 (85.4) | 4.9 | |
Y. Xu, A. Osep, Y. Ban, R. Horaud, L. Leal-Taixe, X. Alameda-Pineda. How To Train Your Deep Multi-Object Tracker. In , 2019. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
Tracktor++ 51. | 53.5 | 52.3 | 42.1 | 459 (19.5) | 861 (36.6) | 12,201 | 248,047 | 56.0 | 96.3 | 41.7 | 42.9 | 45.4 | 75.6 | 45.0 | 77.3 | 80.9 | 0.7 | 2,072 (37.0) | 4,611 (82.3) | 1.5 | |
P. Bergmann, T. Meinhardt, L. Leal-Taixé. Tracking without bells and whistles. In ICCV, 2019. | |||||||||||||||||||||
SFS 52. | 53.1 | 53.4 | 41.5 | 471 (20.0) | 807 (34.3) | 37,802 | 223,761 | 60.3 | 90.0 | 40.4 | 43.0 | 44.2 | 69.8 | 46.8 | 69.7 | 77.9 | 2.1 | 2,806 (46.5) | 6,380 (105.7) | 0.9 | |
MTSFS: Online Multi-Object Tracking Based on Salient Feature Selection in Crowded Scenes | |||||||||||||||||||||
ENFT17 53. | 52.8 | 57.1 | 44.5 | 543 (23.1) | 867 (36.8) | 26,754 | 237,909 | 57.8 | 92.4 | 46.2 | 43.2 | 50.6 | 74.0 | 46.3 | 74.0 | 80.4 | 1.5 | 1,667 (28.8) | 2,557 (44.2) | 0.5 | |
BUAA | |||||||||||||||||||||
LSST17O 54. | 52.7 | 57.9 | 44.3 | 421 (17.9) | 863 (36.6) | 22,512 | 241,936 | 57.1 | 93.5 | 46.7 | 42.4 | 50.7 | 73.2 | 45.1 | 73.8 | 79.5 | 1.3 | 2,167 (37.9) | 7,443 (130.3) | 1.8 | |
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification | |||||||||||||||||||||
JBNOT 55. | 52.6 | 50.8 | 41.3 | 465 (19.7) | 844 (35.8) | 31,572 | 232,659 | 58.8 | 91.3 | 39.8 | 43.3 | 43.0 | 73.9 | 46.9 | 72.8 | 80.2 | 1.8 | 3,050 (51.9) | 3,792 (64.5) | 5.4 | |
R. Henschel, Y. Zou, B. Rosenhahn. Multiple People Tracking using Body and Joint Detections. In CVPRW, 2019. | |||||||||||||||||||||
FAMNet 56. | 52.0 | 48.7 | 0.0 | 450 (19.1) | 787 (33.4) | 14,138 | 253,616 | 55.1 | 95.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.8 | 3,072 (55.8) | 5,318 (96.6) | 0.0 | |
P. Chu, H. Ling. FAMNet: Joint Learning of Feature, Affinity and Multi-dimensional Assignment for Online Multiple Object Tracking. In ICCV, 2019. | |||||||||||||||||||||
eTC17 57. | 51.9 | 58.1 | 44.9 | 544 (23.1) | 836 (35.5) | 36,164 | 232,783 | 58.7 | 90.2 | 47.0 | 43.3 | 51.7 | 72.1 | 46.9 | 72.0 | 79.4 | 2.0 | 2,288 (38.9) | 3,071 (52.3) | 0.7 | |
G. Wang, Y. Wang, H. Zhang, R. Gu, J. Hwang. Exploit the connectivity: Multi-object tracking with trackletnet. In Proceedings of the 27th ACM International Conference on Multimedia, 2019. | |||||||||||||||||||||
CMT 58. | 51.8 | 60.7 | 46.9 | 462 (19.6) | 1,009 (42.8) | 29,528 | 240,960 | 57.3 | 91.6 | 51.6 | 42.8 | 55.5 | 77.1 | 46.0 | 73.6 | 80.3 | 1.7 | 1,217 (21.2) | 2,008 (35.0) | 6.5 | |
#Submission: TIP-21190-2019 | |||||||||||||||||||||
eHAF17 59. | 51.8 | 54.7 | 43.4 | 551 (23.4) | 893 (37.9) | 33,212 | 236,772 | 58.0 | 90.8 | 44.3 | 42.8 | 49.7 | 70.1 | 46.3 | 72.5 | 80.0 | 1.9 | 1,834 (31.6) | 2,739 (47.2) | 0.7 | |
H. Sheng, Y. Zhang, J. Chen, Z. Xiong, J. Zhang. Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. In IEEE Transactions on Circuits and Systems for Video Technology, 2018. | |||||||||||||||||||||
AFN17 60. | 51.5 | 46.9 | 38.5 | 485 (20.6) | 836 (35.5) | 22,391 | 248,420 | 56.0 | 93.4 | 35.6 | 42.1 | 37.6 | 77.8 | 44.8 | 74.8 | 80.6 | 1.3 | 2,593 (46.3) | 4,308 (77.0) | 1.8 | |
H. Shen, L. Huang, C. Huang, W. Xu. Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. In CoRR, 2018. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
BLSTM_MTP_O 61. | 51.5 | 54.9 | 41.3 | 481 (20.4) | 836 (35.5) | 29,616 | 241,619 | 57.2 | 91.6 | 41.6 | 41.3 | 44.8 | 72.0 | 44.3 | 70.9 | 77.9 | 1.7 | 2,566 (0.0) | 7,748 (0.0) | 20.1 | |
C. Kim, F. Li, M. Alotaibi, J. Rehg. Discriminative Appearance Modeling with Multi-track Pooling for Real-time Multi-object Tracking. In CVPR (accepted), 2021. | |||||||||||||||||||||
CoCT_pub 62. | 51.4 | 55.2 | 42.6 | 478 (20.3) | 913 (38.8) | 27,164 | 245,236 | 56.5 | 92.2 | 43.6 | 41.9 | 49.2 | 69.7 | 44.9 | 73.2 | 79.8 | 1.5 | 1,657 (0.0) | 3,987 (0.0) | 29.6 | |
https://ieeexplore.ieee.org/abstract/document/9247175 | |||||||||||||||||||||
YOONKJ17 63. | 51.4 | 54.0 | 36.9 | 500 (21.2) | 878 (37.3) | 29,051 | 243,202 | 56.9 | 91.7 | 43.5 | 31.4 | 48.5 | 70.8 | 33.2 | 72.8 | 79.8 | 1.6 | 2,118 (37.2) | 3,072 (54.0) | 3.4 | |
K. YOON, J. GWAK, Y. SONG, Y. YOON, M. JEON. OneShotDA: Online Multi-object Tracker with One-shot-learning-based Data Association. In IEEE Access, 2020. | |||||||||||||||||||||
FWT 64. | 51.3 | 47.6 | 39.0 | 505 (21.4) | 830 (35.2) | 24,101 | 247,921 | 56.1 | 92.9 | 36.8 | 41.9 | 39.8 | 72.3 | 44.7 | 74.0 | 80.0 | 1.4 | 2,648 (47.2) | 4,279 (76.3) | 0.2 | |
R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Body Detectors for Multi-Object Tracking. In Trajnet CVPRW, 2018. | |||||||||||||||||||||
NOTA 65. | 51.3 | 54.5 | 42.3 | 403 (17.1) | 833 (35.4) | 20,148 | 252,531 | 55.2 | 93.9 | 43.6 | 41.3 | 47.6 | 72.8 | 43.8 | 74.5 | 79.9 | 1.1 | 2,285 (41.4) | 5,798 (105.0) | 17.8 | |
L. Chen, H. Ai, R. Chen, Z. Zhuang. Aggregate Tracklet Appearance Features for Multi-Object Tracking. In IEEE Signal Processing Letters, 2019. | |||||||||||||||||||||
jCC 66. | 51.2 | 54.5 | 42.5 | 493 (20.9) | 872 (37.0) | 25,937 | 247,822 | 56.1 | 92.4 | 44.2 | 41.2 | 46.7 | 77.9 | 44.0 | 72.6 | 79.2 | 1.5 | 1,802 (32.1) | 2,984 (53.2) | 1.8 | |
M. Keuper, S. Tang, B. Andres, T. Brox, B. Schiele. Motion Segmentation amp; Multiple Object Tracking by Correlation Co-Clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018. | |||||||||||||||||||||
STRN_MOT17 67. | 50.9 | 56.0 | 42.6 | 446 (18.9) | 797 (33.8) | 25,295 | 249,365 | 55.8 | 92.6 | 44.2 | 41.2 | 47.9 | 73.2 | 43.9 | 72.9 | 79.0 | 1.4 | 2,397 (43.0) | 9,363 (167.8) | 13.8 | |
J. Xu, Y. Cao, Z. Zhang, H. Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. In ICCV, 2019. | |||||||||||||||||||||
MOTDT17 68. | 50.9 | 52.7 | 41.2 | 413 (17.5) | 841 (35.7) | 24,069 | 250,768 | 55.6 | 92.9 | 41.4 | 41.3 | 45.6 | 70.3 | 44.1 | 73.7 | 79.7 | 1.4 | 2,474 (44.5) | 5,317 (95.7) | 18.3 | |
C. Long, A. Haizhou, Z. Zijie, S. Chong. Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018. | |||||||||||||||||||||
MHT_DAM 69. | 50.7 | 47.2 | 38.9 | 491 (20.8) | 869 (36.9) | 22,875 | 252,889 | 55.2 | 93.2 | 36.7 | 41.6 | 38.3 | 80.2 | 44.3 | 74.8 | 80.6 | 1.3 | 2,314 (41.9) | 2,865 (51.9) | 0.9 | |
C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015. | |||||||||||||||||||||
TLMHT 70. | 50.6 | 56.5 | 44.2 | 415 (17.6) | 1,022 (43.4) | 22,213 | 255,030 | 54.8 | 93.3 | 47.5 | 41.4 | 50.7 | 78.0 | 44.0 | 75.0 | 80.6 | 1.3 | 1,407 (25.7) | 2,079 (37.9) | 2.6 | |
H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, J. Yu. Iterative Multiple Hypothesis Tracking with Tracklet-level Association. In IEEE Transactions on Circuits and Systems for Video Technology, 2018. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
DEEP_TAMA 71. | 50.3 | 53.5 | 42.0 | 453 (19.2) | 883 (37.5) | 25,479 | 252,996 | 55.2 | 92.4 | 43.3 | 41.0 | 46.9 | 73.1 | 43.8 | 73.4 | 79.7 | 1.4 | 2,192 (39.7) | 3,978 (72.1) | 1.5 | |
Y. Yoon, D. Kim, Y. Song, K. Yoon, M. Jeon. Online Multiple Pedestrians Tracking using Deep Temporal Appearance Matching Association. In Information Sciences, 2020. | |||||||||||||||||||||
EDMT17 72. | 50.0 | 51.3 | 41.3 | 509 (21.6) | 855 (36.3) | 32,279 | 247,297 | 56.2 | 90.8 | 41.1 | 41.8 | 43.4 | 77.8 | 45.1 | 72.9 | 80.2 | 1.8 | 2,264 (40.3) | 3,260 (58.0) | 0.6 | |
J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017. | |||||||||||||||||||||
GMPHDOGM17 73. | 49.9 | 47.1 | 0.0 | 464 (19.7) | 895 (38.0) | 24,024 | 255,277 | 54.8 | 92.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 1.4 | 3,125 (57.1) | 3,540 (64.7) | 30.7 | |
Y. Song, K. Yoon, Y. Yoon, K. Yow, M. Jeon. Online Multi-Object Tracking with GMPHD Filter and Occlusion Group Management. In IEEE Access, 2019. | |||||||||||||||||||||
CS_MOT 74. | 49.7 | 51.5 | 39.0 | 300 (12.7) | 899 (38.2) | 25,149 | 256,074 | 54.6 | 92.5 | 38.7 | 39.6 | 41.9 | 71.4 | 42.3 | 71.5 | 78.2 | 1.4 | 2,499 (45.8) | 10,312 (188.8) | 1.1 | |
A Cost Matrix Optimization Method Based on Spatial Constraints under Hungarian Algorithm | |||||||||||||||||||||
MTDF17 75. | 49.6 | 45.2 | 37.7 | 444 (18.9) | 779 (33.1) | 37,124 | 241,768 | 57.2 | 89.7 | 34.5 | 42.0 | 36.5 | 76.2 | 45.4 | 71.3 | 78.8 | 2.1 | 5,567 (97.4) | 9,260 (162.0) | 1.2 | |
Z. Fu, F. Angelini, J. Chambers, S. Naqvi. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. In IEEE Transactions on Multimedia, 2019. | |||||||||||||||||||||
DASOT17 76. | 49.5 | 51.8 | 41.5 | 481 (20.4) | 814 (34.6) | 33,640 | 247,370 | 56.2 | 90.4 | 41.7 | 41.6 | 44.4 | 75.6 | 44.9 | 72.3 | 79.9 | 1.9 | 4,142 (73.8) | 6,852 (122.0) | 9.1 | |
Q. Chu, W. Ouyang, B. Liu, F. Zhu, N. Yu. DASOT: A Unified Framework Integrating Data Association and Single Object Tracking for Online Multi-Object Tracking. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020. | |||||||||||||||||||||
PHD_GM 77. | 48.8 | 43.2 | 0.0 | 449 (19.1) | 830 (35.2) | 26,260 | 257,971 | 54.3 | 92.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 1.5 | 4,407 (81.2) | 6,448 (118.8) | 22.3 | |
R. Sanchez-Matilla, A. Cavallaro. Motion Prediction for First-person Vision Multi-object Tracking. In ECCVw, 2020. | |||||||||||||||||||||
OTCD_1 78. | 48.6 | 47.9 | 38.4 | 382 (16.2) | 970 (41.2) | 18,499 | 268,204 | 52.5 | 94.1 | 37.6 | 39.6 | 40.4 | 73.8 | 41.8 | 74.9 | 80.0 | 1.0 | 3,502 (66.7) | 5,588 (106.5) | 15.5 | |
Q. Liu, B. Liu, Y. Wu, W. Li, N. Yu. Real-Time Online Multi-Object Tracking in Compressed Domain. In IEEE Access, 2019. | |||||||||||||||||||||
HAM_SADF17 79. | 48.3 | 51.1 | 40.3 | 402 (17.1) | 981 (41.7) | 20,967 | 269,038 | 52.3 | 93.4 | 41.5 | 39.3 | 44.4 | 75.8 | 41.7 | 74.5 | 80.2 | 1.2 | 1,871 (35.8) | 3,020 (57.7) | 5.0 | |
Y. Yoon, A. Boragule, Y. Song, K. Yoon, M. Jeon. Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. In IEEE AVSS, 2018. | |||||||||||||||||||||
DMAN 80. | 48.2 | 55.7 | 42.5 | 454 (19.3) | 902 (38.3) | 26,218 | 263,608 | 53.3 | 92.0 | 46.1 | 39.4 | 49.9 | 72.9 | 42.0 | 72.5 | 79.0 | 1.5 | 2,194 (41.2) | 5,378 (100.9) | 0.3 | |
J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, M. Yang. Online Multi-Object Tracking with Dual Matching Attention Networks. In ECCV, 2018. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
AM_ADM17 81. | 48.1 | 52.1 | 40.5 | 316 (13.4) | 934 (39.7) | 25,061 | 265,495 | 52.9 | 92.3 | 42.0 | 39.5 | 45.1 | 73.8 | 42.1 | 73.4 | 79.8 | 1.4 | 2,214 (41.8) | 5,027 (94.9) | 5.7 | |
S. Lee, M. Kim, S. Bae, Learning Discriminative Appearance Models for Online Multi-Object Tracking with Appearance Discriminability Measures, In IEEE Access, 2018. | |||||||||||||||||||||
PHD_GSDL17 82. | 48.0 | 49.6 | 39.2 | 402 (17.1) | 838 (35.6) | 23,199 | 265,954 | 52.9 | 92.8 | 39.2 | 39.5 | 43.4 | 70.2 | 42.1 | 73.9 | 80.1 | 1.3 | 3,998 (75.6) | 8,886 (168.1) | 6.7 | |
Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Naqvi. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Learning. In IEEE Access, 2018. | |||||||||||||||||||||
BBT 83. | 47.8 | 50.0 | 40.0 | 449 (19.1) | 936 (39.7) | 35,552 | 255,118 | 54.8 | 89.7 | 40.3 | 40.0 | 45.3 | 66.8 | 43.3 | 71.0 | 79.2 | 2.0 | 3,676 (67.1) | 4,949 (90.3) | 121.6 | |
MTAP-D-20-01870 Tracking Subjects and Detecting Relationships in Crowded City Videos (under review) | |||||||||||||||||||||
MHT_bLSTM 84. | 47.5 | 51.9 | 41.0 | 429 (18.2) | 981 (41.7) | 25,981 | 268,042 | 52.5 | 91.9 | 42.8 | 39.5 | 47.3 | 73.8 | 42.2 | 73.8 | 80.4 | 1.5 | 2,069 (39.4) | 3,124 (59.5) | 1.9 | |
C. Kim, F. Li, J. Rehg. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In ECCV, 2018. | |||||||||||||||||||||
DAM_MOT 85. | 47.0 | 48.7 | 0.0 | 397 (16.9) | 897 (38.1) | 28,933 | 267,896 | 52.5 | 91.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 1.6 | 2,140 (40.7) | 2,756 (52.5) | 18.7 | |
Multi Object Tracking using Deep Structural Cost Minimization in Data Association | |||||||||||||||||||||
MASS 86. | 46.9 | 46.0 | 36.8 | 399 (16.9) | 856 (36.3) | 25,733 | 269,116 | 52.3 | 92.0 | 35.4 | 38.5 | 38.8 | 70.2 | 41.2 | 72.4 | 79.4 | 1.4 | 4,478 (85.6) | 11,994 (229.3) | 17.1 | |
H. Karunasekera, H. Wang, H. Zhang. Multiple Object Tracking With Attention to Appearance, Structure, Motion and Size. In IEEE Access, 2019. | |||||||||||||||||||||
GMPHD_Rd17 87. | 46.8 | 54.1 | 41.5 | 464 (19.7) | 784 (33.3) | 38,452 | 257,678 | 54.3 | 88.9 | 43.5 | 39.9 | 47.2 | 75.0 | 43.3 | 70.9 | 79.5 | 2.2 | 3,865 (71.1) | 8,097 (149.0) | 30.8 | |
N. Baisa. Occlusion-robust online multi-object visual tracking using a GM-PHD filter with CNN-based re-identification. In Journal of Visual Communication and Image Representation, 2021. | |||||||||||||||||||||
PHD_DCM 88. | 46.5 | 47.6 | 38.2 | 397 (16.9) | 875 (37.2) | 23,859 | 272,430 | 51.7 | 92.4 | 37.9 | 38.8 | 41.1 | 73.0 | 41.3 | 73.8 | 80.2 | 1.3 | 5,649 (109.2) | 9,298 (179.8) | 1.6 | |
Z. Fu, F. Angelini, S. Naqvi, J. Chambers. GM-PHD Filter Based Online Multiple Human Tracking Using Deep Discriminative Correlation Matching. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018. | |||||||||||||||||||||
PHD_LMP 89. | 45.9 | 42.5 | 0.0 | 364 (15.5) | 892 (37.9) | 27,946 | 272,196 | 51.8 | 91.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 1.6 | 4,977 (96.2) | 6,985 (135.0) | 29.4 | |
R. Sanchez-Matilla, A. Cavallaro. Motion Prediction for First-person Vision Multi-object Tracking. In ECCVw, 2020. | |||||||||||||||||||||
EDA_GNN 90. | 45.5 | 40.5 | 33.6 | 368 (15.6) | 955 (40.6) | 25,685 | 277,663 | 50.8 | 91.8 | 30.3 | 37.8 | 32.2 | 72.9 | 40.3 | 72.8 | 79.5 | 1.4 | 4,091 (80.5) | 5,579 (109.8) | 39.3 | |
Paper ID 2713 | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
IOU17 91. | 45.5 | 39.4 | 33.5 | 369 (15.7) | 953 (40.5) | 19,993 | 281,643 | 50.1 | 93.4 | 30.4 | 37.4 | 32.9 | 73.6 | 39.6 | 73.8 | 79.9 | 1.1 | 5,988 (119.6) | 7,404 (147.8) | 1,522.9 | |
E. Bochinski, V. Eiselein, T. Sikora. High-Speed Tracking-by-Detection Without Using Image Information. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017. | |||||||||||||||||||||
HISP_DAL17 92. | 45.4 | 39.9 | 34.0 | 349 (14.8) | 922 (39.2) | 21,820 | 277,473 | 50.8 | 92.9 | 30.7 | 38.1 | 32.2 | 77.3 | 40.5 | 74.1 | 80.2 | 1.2 | 8,727 (171.7) | 7,147 (140.6) | 3.2 | |
N. Baisa. Robust online multi-target visual tracking using a HISP filter with discriminative deep appearance learning. In Journal of Visual Communication and Image Representation, 2021. | |||||||||||||||||||||
LM_NN 93. | 45.1 | 43.2 | 0.0 | 348 (14.8) | 1,088 (46.2) | 10,834 | 296,451 | 47.5 | 96.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 2,286 (48.2) | 2,463 (51.9) | 0.9 | |
M. Babaee, Z. Li, G. Rigoll. A Dual CNN--RNN for Multiple People Tracking. In Neurocomputing, 2019. | |||||||||||||||||||||
FPSN 94. | 44.9 | 48.4 | 38.1 | 388 (16.5) | 844 (35.8) | 33,757 | 269,952 | 52.2 | 89.7 | 38.3 | 38.3 | 41.7 | 70.3 | 41.4 | 71.2 | 79.6 | 1.9 | 7,136 (136.8) | 14,491 (277.8) | 10.1 | |
S. Lee, E. Kim. Multiple Object Tracking via Feature Pyramid Siamese Networks. In IEEE ACCESS, 2018. | |||||||||||||||||||||
HISP_T17 95. | 44.6 | 38.8 | 33.3 | 355 (15.1) | 913 (38.8) | 25,478 | 276,395 | 51.0 | 91.9 | 29.5 | 38.1 | 31.1 | 76.3 | 40.7 | 73.2 | 80.1 | 1.4 | 10,617 (208.1) | 7,487 (146.8) | 4.7 | |
N. Baisa. Online Multi-target Visual Tracking using a HISP Filter. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, 2018. | |||||||||||||||||||||
GMPHD_DAL 96. | 44.4 | 36.2 | 31.4 | 350 (14.9) | 927 (39.4) | 19,170 | 283,380 | 49.8 | 93.6 | 26.6 | 37.5 | 29.1 | 69.7 | 39.7 | 74.6 | 80.4 | 1.1 | 11,137 (223.7) | 13,900 (279.3) | 3.4 | |
N. Baisa. Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning. In 2019 22th International Conference on Information Fusion (FUSION), 2019. | |||||||||||||||||||||
SAS_MOT17 97. | 44.2 | 57.2 | 43.0 | 379 (16.1) | 1,044 (44.3) | 29,473 | 283,611 | 49.7 | 90.5 | 50.1 | 37.0 | 53.7 | 76.3 | 39.7 | 72.2 | 79.5 | 1.7 | 1,529 (30.7) | 2,644 (53.2) | 4.8 | |
A. Maksai, P. Fua. Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking. In CVPR, 2019. | |||||||||||||||||||||
GMPHD_SHA 98. | 43.7 | 39.2 | 33.2 | 276 (11.7) | 1,012 (43.0) | 25,935 | 287,758 | 49.0 | 91.4 | 30.6 | 36.6 | 32.3 | 77.3 | 39.0 | 72.7 | 79.6 | 1.5 | 3,838 (78.3) | 5,056 (103.2) | 9.2 | |
Y. Song, M. Jeon. Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter using Motion and Appearance. In IEEE/IEIE The International Conference on Consumer Electronics (ICCE) Asia, 2016. | |||||||||||||||||||||
SORT17 99. | 43.1 | 39.8 | 34.0 | 295 (12.5) | 997 (42.3) | 28,398 | 287,582 | 49.0 | 90.7 | 31.8 | 37.0 | 33.1 | 79.6 | 39.5 | 73.1 | 80.5 | 1.6 | 4,852 (99.0) | 7,127 (145.4) | 143.3 | |
A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft. Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP), 2016. | |||||||||||||||||||||
EAMTT 100. | 42.6 | 41.8 | 0.0 | 300 (12.7) | 1,006 (42.7) | 30,711 | 288,474 | 48.9 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 1.7 | 4,488 (91.8) | 5,720 (117.0) | 12.0 | |
R. Sanchez-Matilla, F. Poiesi, A. Cavallaro. Online Multi-target Tracking with Strong and Weak Detections. In Computer Vision -- ECCV 2016 Workshops, 2016. | |||||||||||||||||||||
Tracker | MOTA | IDF1 | HOTA | MT | ML | FP | FN | Rcll | Prcn | AssA | DetA | AssRe | AssPr | DetRe | DetPr | LocA | FAF | ID Sw. | Frag | Hz | |
GMPHD_N1Tr 101. | 42.1 | 33.9 | 30.3 | 280 (11.9) | 1,005 (42.7) | 18,214 | 297,646 | 47.2 | 93.6 | 25.9 | 36.1 | 27.3 | 76.2 | 38.0 | 75.2 | 80.5 | 1.0 | 10,698 (226.4) | 10,864 (229.9) | 9.9 | |
N. Baisa, A. Wallace. Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. In Journal of Visual Communication and Image Representation, 2019. | |||||||||||||||||||||
FlowTracker 102. | 40.4 | 38.0 | 32.5 | 330 (14.0) | 863 (36.6) | 60,962 | 269,136 | 52.3 | 82.9 | 28.9 | 37.1 | 30.4 | 76.8 | 41.6 | 66.0 | 78.8 | 3.4 | 5,927 (0.0) | 6,748 (0.0) | 61.2 | |
H. Nishimura et al., "SDOF-Tracker: Fast and Accurate Multiple Human Tracking by Skipped-Detection and Optical-Flow" | |||||||||||||||||||||
OVBT17 103. | 40.2 | 43.6 | 34.6 | 151 (6.4) | 1,169 (49.6) | 27,497 | 305,179 | 45.9 | 90.4 | 34.9 | 34.7 | 36.9 | 75.3 | 36.9 | 72.7 | 80.1 | 1.5 | 4,763 (0.0) | 8,711 (0.0) | 1.7 | |
Y. Ban, S. Ba, X. Alameda-Pineda, R. Horaud. Tracking multiple persons based on a variational bayesian model. In European Conference on Computer Vision Workshops, 2016. | |||||||||||||||||||||
GMPHD_KCF 104. | 39.6 | 36.6 | 30.3 | 208 (8.8) | 1,019 (43.3) | 50,903 | 284,228 | 49.6 | 84.6 | 26.4 | 35.3 | 28.0 | 72.8 | 38.9 | 66.3 | 77.8 | 2.9 | 5,811 (117.1) | 7,414 (149.4) | 3.3 | |
T. Kutschbach, E. Bochinski, V. Eiselein, T. Sikora. Sequential Sensor Fusion Combining Probability Hypothesis Density and Kernelized Correlation Filters for Multi-Object Tracking in Video Data. In International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, 2017. | |||||||||||||||||||||
GM_PHD 105. | 36.4 | 33.9 | 28.1 | 97 (4.1) | 1,349 (57.3) | 23,723 | 330,767 | 41.4 | 90.8 | 26.0 | 30.8 | 27.1 | 77.7 | 32.7 | 71.7 | 79.4 | 1.3 | 4,607 (111.3) | 11,317 (273.5) | 38.4 | |
V. Eiselein, D. Arp, M. Pätzold, T. Sikora. Real-time Multi-Human Tracking using a Probability Hypothesis Density Filter and multiple detectors. In 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2012. | |||||||||||||||||||||
MOTR_test 106. | 34.4 | 51.7 | 43.8 | 612 (26.0) | 794 (33.7) | 172,571 | 194,478 | 65.5 | 68.2 | 46.9 | 41.2 | 51.6 | 75.1 | 54.6 | 56.8 | 81.8 | 9.7 | 2,824 (0.0) | 4,629 (0.0) | 66.9 | |
None |
Sequences | Frames | Trajectories | Boxes |
21 | 17757 | 2355 | 564228 |
Measure | Better | Perfect | Description |
MOTA | higher | 100% | Multi-Object Tracking Accuracy (+/- denotes standard deviation across all sequences) [1]. This measure combines three error sources: false positives, missed targets and identity switches. |
IDF1 | higher | 100% | ID F1 Score [2]. The ratio of correctly identified detections over the average number of ground-truth and computed detections. |
HOTA | higher | 100% | Higher Order Tracking Accuracy [3]. Geometric mean of detection accuracy and association accuracy. Averaged across localization thresholds. |
MT | higher | 100% | Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span. |
ML | lower | 0% | Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span. |
FP | lower | 0 | The total number of false positives. |
FN | lower | 0 | The total number of false negatives (missed targets). |
Rcll | higher | 100% | Ratio of correct detections to total number of GT boxes. |
Prcn | higher | 100% | Ratio of TP / (TP+FP). |
AssA | higher | 100% | Association Accuracy [3]. Association Jaccard index averaged over all matching detections and then averaged over localization thresholds. |
DetA | higher | 100% | Detection Accuracy [3]. Detection Jaccard index averaged over localization thresholds. |
AssRe | higher | 100% | Association Recall [3]. TPA / (TPA + FNA) averaged over all matching detections and then averaged over localization thresholds. |
AssPr | higher | 100% | Association Precision [3]. TPA / (TPA + FPA) averaged over all matching detections and then averaged over localization thresholds. |
DetRe | higher | 100% | Detection Recall [3]. TP /(TP + FN) averaged over localization thresholds. |
DetPr | higher | 100% | Detection Precision [3]. TP /(TP + FP) averaged over localization thresholds. |
LocA | higher | 100% | Localization Accuracy [3]. Average localization similarity averaged over all matching detections and averaged over localization thresholds. |
FAF | lower | 0 | The average number of false alarms per frame. |
ID Sw. | lower | 0 | Number of Identity Switches (ID switch ratio = #ID switches / recall) [4]. Please note that we follow the stricter definition of identity switches as described in the reference |
Frag | lower | 0 | The total number of times a trajectory is fragmented (i.e. interrupted during tracking). |
Hz | higher | Inf. | Processing speed (in frames per second excluding the detector) on the benchmark. The frequency is provided by the authors and not officially evaluated by the MOTChallenge. |
Symbol | Description |
This is an online (causal) method, i.e. the solution is immediately available with each incoming frame and cannot be changed at any later time. | |
This method used the provided detection set as input. | |
This method used a private detection set as input. | |
This entry has been submitted or updated less than a week ago. |
[1] | Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008. |
[2] | Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016. |
[3] | HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking. International Journal of Computer Vision, 2020. |
[4] | Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009. |